Math, asked by khanfarhan4654, 9 months ago

Rationalising factor of cube root of 25 + (1/ cube root of 25 -1)

Answers

Answered by ashishks1912
1

GIVEN :

The expression is \frac{\sqrt[3]{25}+1}{\sqrt[3]{25}-1}

TO RATIONALISE :

The  given expression \frac{\sqrt[3]{25}+1}{\sqrt[3]{25}-1}

SOLUTION :

Given expression is \frac{\sqrt[3]{25}+1}{\sqrt[3]{25}-1}

Now solving the given expression as below :

\frac{\sqrt[3]{25}+1}{\sqrt[3]{25}-1}

=\frac{5\sqrt{5}+1}{5\sqrt{5}-1}

Multiplying and dividing by 5\sqrt{5}+1  by the denominator's conjugate.

=\frac{5\sqrt{5}+1}{5\sqrt{5}-1}\times \frac{5\sqrt{5}+1}{5\sqrt{5}+1}

By using the Algebraic Identity :

(a+b)(a-b)=a^2-b^2

=\frac{(5\sqrt{5}+1)^2}{(5\sqrt{5})^2-1^2}

By using the Algebraic Identity :

(a+b)^2=a^2+2ab+b^2

=\frac{(5\sqrt{5})^2+2(5\sqrt{5})(1)+1^2}{5^2(\sqrt{5})^2-1^2}

=\frac{5^2\sqrt{5}^2+10\sqrt{5}+1}{25(5)-1}

By using the square root property

\sqrt{x}^2=x

=\frac{25(5)+10\sqrt{5}+1}{125-1}

=\frac{125+10\sqrt{5}+1}{124}

By adding the like terms

=\frac{126+10\sqrt{5}}{124}

After simplifying the terms,

=\frac{63+5\sqrt{5}}{62}

\frac{\sqrt[3]{25}+1}{\sqrt[3]{25}-1}=\frac{63+5\sqrt{5}}{62}

∴ the given expression \frac{\sqrt[3]{25}+1}{\sqrt[3]{25}-1} rationalised into \frac{63+5\sqrt{5}}{62}.

Similar questions