Math, asked by luyandomukonka66, 2 months ago

Rationalising the denominator
√5+1/√5_2

Answers

Answered by sharanyalanka7
1

Step-by-step explanation:

\huge\sf\underline\red{answer}

 \frac{ \sqrt{5 }+1 }{ \sqrt{5 }-2 }

 \frac{ \sqrt{5 }  + 1 }{ \sqrt{5 } - 2 } \times  \frac{ \sqrt{5 } + 2 }{ \sqrt{5 }  + 2}

 \frac{ \sqrt{5}( \sqrt{5} + 2) + 1( \sqrt{5} + 2)   }{5 - 4}

 \frac{5 + 2 \sqrt{5} +  \sqrt{5} + 2  }{1}

 \frac{7 + 3 \sqrt{5} }{1}

7 + 3 \sqrt{5}

Answered by Anonymous
1

Aɴsᴡᴇʀ:-

\huge\sf\underline\red{answer}

 \frac{ \sqrt{5 }+1 }{ \sqrt{5 }-2 }

 \frac{ \sqrt{5 }  + 1 }{ \sqrt{5 } - 2 } \times  \frac{ \sqrt{5 } + 2 }{ \sqrt{5 }  + 2}

 \frac{ \sqrt{5}( \sqrt{5} + 2) + 1( \sqrt{5} + 2)   }{5 - 4}

 \frac{5 + 2 \sqrt{5} +  \sqrt{5} + 2  }{1}

 \frac{7 + 3 \sqrt{5} }{1}

7 + 3 \sqrt{5}

Similar questions