Math, asked by vanimusmeeri, 6 months ago

rationalising the denominator√7-√5/√7+√5​

Answers

Answered by ItzDαrkHσrsє
11

Given:

  • \mathtt{ \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  +  \sqrt{5} } }

To Find:

  • \sf{Rationalisation \: of \: denominator.}

Formulas Used:

  • \mathtt{( {a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab}

  • \mathtt{(a + b) (a - b) =  {a}^{2}  -  {b}^{2} }

Solution:

Let's rationalize the denominator,

:\implies\mathfrak{ \frac{ \sqrt{7 -  \sqrt{5} } }{ \sqrt{7} +  \sqrt{5}  } }

:\implies\mathfrak{ \frac{ \sqrt{7 -  \sqrt{5} } }{ \sqrt{7} +  \sqrt{5}  } } \\  \\  \\ :\implies\mathfrak{ \frac{ {( \sqrt{7} -  \sqrt{5})  }^{2} }{( { \sqrt{7)} }^{2} +  { \sqrt{(5)} }^{2}  } } \\  \\  \\ :\implies\mathfrak{ \frac{7 + 5 - 2 \sqrt{35} }{7 - 5} } \\  \\  \\ :\implies\mathfrak{ \frac{12 - 2 \sqrt{35} }{2} } \\  \\  \\ :\implies\mathfrak{ \frac{2(6 -  \sqrt{35)} }{2} } \\  \\  \\ \boxed{:\implies\mathfrak\red{6 -  \sqrt{35} }}

Hence,

  • The rationalization of denominator is 6 - 35.
Answered by Anonymous
28

ɢɪᴠᴇɴ:-

  • √7-√5/√7+√5

ᴛᴏ Do:-

  • Rationalisation of the denominator.

ꜱᴏʟᴜᴛɪᴏɴ:-

\begin{lgathered}\begin{lgathered}\begin{lgathered}\begin{lgathered}:\implies\frak {\dfrac{ \sqrt{7} - \sqrt{5} }{ \sqrt{7} + \sqrt{5} } \times \dfrac{ \sqrt{7} - \sqrt{5} }{ \sqrt{7} - \sqrt{5}}} \\ \\\end{lgathered}\end{lgathered}\end{lgathered}\end{lgathered}

\begin{lgathered}\begin{lgathered}\begin{lgathered}\begin{lgathered}:\implies\frak {\dfrac{ \Big({ \sqrt{7} - \sqrt{5} \Big) }^{2} }{ {\Big( \sqrt{7}\Big)}^{2} + \Big({\sqrt{5} \Big)}^{2}}} \\ \\\end{lgathered}\end{lgathered}\end{lgathered}\end{lgathered}

\begin{lgathered}\begin{lgathered}\begin{lgathered}\begin{lgathered}:\implies\frak { \dfrac{7 + 5 - 2 \sqrt{35} }{7 - 5}}} \\ \\\end{lgathered}\end{lgathered}\end{lgathered}\end{lgathered}

\begin{lgathered}\begin{lgathered}\begin{lgathered}\begin{lgathered}:\implies\frak {\dfrac{7 + 5 - 2 \sqrt{35} }{7 - 5 }} \\ \\\end{lgathered}\end{lgathered}\end{lgathered}\end{lgathered}

\begin{lgathered}\begin{lgathered}\begin{lgathered}\begin{lgathered}:\implies\frak {\dfrac{12 - 2 \sqrt{35} }{2}} \\ \\\end{lgathered}\end{lgathered}\end{lgathered}\end{lgathered}

\begin{lgathered}\begin{lgathered}\begin{lgathered}\begin{lgathered}:\implies\frak {\dfrac{2(6 - \sqrt{35} )}{2} } \\ \\\end{lgathered}\end{lgathered}\end{lgathered}\end{lgathered}

\begin{lgathered}\begin{lgathered}\begin{lgathered}\begin{lgathered}:\implies\frak {  \dfrac{ \cancel2(6 - \sqrt{35} )}{ \cancel2}  } \\ \\\end{lgathered}\end{lgathered}\end{lgathered}\end{lgathered}

\begin{lgathered}\begin{lgathered}\begin{lgathered}\begin{lgathered}:\implies\frak {    6 - \sqrt{35}  } \\ \\\end{lgathered}\end{lgathered}\end{lgathered}\end{lgathered}

━━━━━━━━━━━━━━━━━━━━━━

ꜰᴏʀᴍᴜʟᴀᴇ ᴜꜱᴇᴅ:-

  • ( a - b )² = a² + b² - 2ab

  • ( a + b )( a - b ) = a² - b²

Similar questions