Math, asked by rayalavasantharao760, 7 months ago

rationalising the denominator of 3+root2/3root2=a+broot2 they find the value of a and b​

Answers

Answered by Anonymous
11

\blue\bigstar Correct Question:

Find the value of a :

  \sf\dfrac{3 \:  +  \:  \sqrt{2} }{3 \:  -  \:  \sqrt{2} }  \:  =  \: a \:  +  \: b \sqrt{2}

\blue\bigstarAnswer:

 \sf  \boxed{\: a \:  =  \:  \dfrac{7}{11}  \sf \: and \:  \: b \:  =  \:  \dfrac{( - 7)}{12} }

\pink\bigstar Given:

  •   \sf\dfrac{3 \:  +  \:  \sqrt{2} }{3 \:  -  \:  \sqrt{2} }  \:  =  \: a \:  +  \: b \sqrt{2}

\pink\bigstarTo find:

  • The value of a and b

\red\bigstar Solution:

LHS = \sf\dfrac{3 \:  +  \:  \sqrt{2} }{3 \:  -  \:  \sqrt{2} }

Let's rationalise the denominator.

\sf\dfrac{(3 \:  +  \:  \sqrt{2})(3 \:  -  \:  \sqrt{2})  }{(3 \:  -  \:  \sqrt{2})(3 \:  -  \:  \sqrt{2})  }  \:

[By using - = (a + b)(a - b) and (a - b)² = - 2ab + ]

\sf = \dfrac{ {(3)}^{2}  \:  -  \:  {( \sqrt{2} )}^{2}   }{ ({3 \:  -  \sqrt{2}) }^{2}  }  \:

\sf  = \dfrac{ 9 \:  -  \: 2   }{ {(3)}^{2} \:    -  \: 2(3)( \sqrt{2}) \:  +  \:  {( \sqrt{2}) }^{2}  }  \:

\sf  = \dfrac{ 7   }{ 9\:    -  \: 6\sqrt{2} \:  +  \:  2} \:

[ \because \sf\sqrt{a}  \:  \times  \:  \sqrt{a} ]

\sf  = \dfrac{ 7   }{ 11\:    -  \: 6\sqrt{2} \:  }\:

RHS = \sf \: a \:  +  \: b \sqrt{2}

We know that LHS = RHS [Given]

\sf   \dfrac{ 7   }{ 11\:    -  \: 6\sqrt{2} \:  }\:   =  \: a \:  +  \: b  \sqrt{2}

[By comparing both sides ]

\sf   \dfrac{ 7   }{ 11}\:    -   \dfrac{7}{ 6\sqrt{2} \:  }\:   =  \: a \:  +  \: b  \sqrt{2}

\sf   \implies \dfrac{ 7   }{ 11}\:        =  \: a \:

\tt And

 \implies \:  -  \: \dfrac{7}{ 6\sqrt{2} \:  }\: =  \: b \sqrt{2}

  \sf\implies \dfrac{( - 7)( \sqrt{2}) }{6 \sqrt{2}  \times  \sqrt{2} }  =   \: b \sqrt{2}

[ By rationalisation]

  \sf\implies \dfrac{( - 7 \sqrt{2}) }{12 }  =   \: b \sqrt{2}

[\sqrt{a} \: \times \: \sqrt{a}\: = \:a]

  \sf\implies \dfrac{( - 7 ) }{12 }  =   \: b

 \sf( \sqrt{2}  \: will \: be \: cancelled \: )

 \sf  \boxed{\therefore \: a \:  =  \:  \dfrac{7}{11}  \sf \: and \:  \: b \:  =  \:  \dfrac{( - 7)}{12} }

\red\bigstar Concepts Used:

  • Rationalisation of Denominator
  • a² - b² = (a + b)(a - b)
  • (a - b)² = a² - 2ab + b²
  • Equation of variables with their Values
  • \sqrt{a} \: \times \: \sqrt{a}\: = \:a

\bigstar Extra - Information:

  • (a + b)² = a² + 2ab + b²

  • (a – b)² = a² – 2ab + b²

  • a² – b²= (a + b)(a – b)

  • (x + a)(x + b) = x² + (a + b) x + ab

  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

  • (a + b)³ = a³ + b³ + 3ab (a + b)

  • (a – b)³ = a³ – b³ – 3ab (a – b)

  • a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c² – ab – bc – ca)
Similar questions