Math, asked by miya8741, 3 months ago

Rationalization of the following question

Attachments:

Answers

Answered by Anonymous
2

3√2 - 2

Step-by-step explanation:

  \frac{2 \sqrt{3} }{ \sqrt{6} + 2 }  \times  \frac{ \sqrt{6}  - 2}{ \sqrt{6} + 2 }  =  \frac{2 \sqrt{3}( \sqrt{6}  - 2) }{ {( \sqrt{6)} }^{2}  -  {2}^{2} }

 \frac{2 \sqrt{18}  - 4 \sqrt{3} }{6 - 4}

 \frac{2( \sqrt{18}  - 2)}{2}

√18-2

3×3×2 - 2

3√2 - 2

Answered by Anonymous
3

 \frac{2 \sqrt{3} }{ \sqrt{6} + 2 }  \\  \\  \frac{2 \sqrt{3} }{ \sqrt{6}  + 2}  \times  \frac{ \sqrt{6} - 2 }{ \sqrt{6} - 2 }  \\  \\  \frac{2 \sqrt{3} ( \sqrt{6} - 2) }{  { (\sqrt{6}) }^{2}  -  {2}^{2} }  \\  \\  \frac{2 \sqrt{18} - 4 \sqrt{3}  }{6 - 4}  \\  \\  \frac{2 \sqrt{9 \times 2}  - 4 \sqrt{3} }{2}  \\  \\  \frac{2 \times 3 \sqrt{2} - 4 \sqrt{3}  }{2}  \\  \\  \frac{6 \sqrt{2} - 4 \sqrt{3}  }{2}

Similar questions