Math, asked by besratgere680, 11 months ago

Rationalize 1/√2+√3-1

Answers

Answered by Vamprixussa
28

Given

\dfrac{1}{\sqrt{2} } + \sqrt{3} -1

Solving, we get,

= \dfrac{1+\sqrt{6}-\sqrt{2}  }{\sqrt{2} }

= \dfrac{1+\sqrt{6}-\sqrt{2}  }{\sqrt{2} } * \dfrac{\sqrt{2} }{\sqrt{2} }

To rationalise the denominator, multiply the numerator and  denominator with the root number.

= \dfrac{\sqrt{2}(1+\sqrt{6}-\sqrt{2} )  }{2}

=\boxed{\boxed{\bold{ \dfrac{\sqrt{2}+2\sqrt{3}-2  }{2}}}}}

                                                             

Answered by Delta13
1

Question:

Rationalize \:  \frac{1}{ \sqrt{2} +  \sqrt{3}   - 1}  \\

Solution:

 =  >  \frac{1}{( \sqrt{2}  +  \sqrt{3} ) - 1}  \times  \frac{( \sqrt{2} +  \sqrt{3}) + 1  }{( \sqrt{2} +  \sqrt{3})   + 1}  \\  \\  =  >  \frac{ \sqrt{2}  +  \sqrt{3} + 1 }{( \sqrt{2}  +  \sqrt{3} ) {}^{2}  - (1) {}^{2} }  \\  \\ using \:  \: ( {x}^{2}  -  {y}^{2} ) = (x + y)(x - y) \\  \\  =  >  \frac{ \sqrt{2} +  \sqrt{3}  + 1 }{( \sqrt{2} ) {}^{2}  + ( \sqrt{3} ) {}^{2} + 2( \sqrt{2} )( \sqrt{3} ) - 1 }  \\  \\  =  >  \frac{ \sqrt{2}  +  \sqrt{3}  + 1}{2 + 3 + 2 \sqrt{6} - 1 }  \\  \\  =  >  \frac{ \sqrt{2} +  \sqrt{3} + 1  }{5 - 1 + 2 \sqrt{6} }  \\  \\  =  >  \frac{ \sqrt{2} +  \sqrt{3}  + 1 }{4 + 2 \sqrt{6} }   \\  \\  =  >  \frac{ \sqrt{2}  +  \sqrt{3}  + 1}{4 + 2 \sqrt{6} }  \times  \frac{4 - 2 \sqrt{6} }{4 - 2 \sqrt{6} }  \\  \\  =  >  \frac{4(  \sqrt{2} +  \sqrt{3}  + 1) - 2 \sqrt{6} ( \sqrt{2} +  \sqrt{3}  + 1)  }{(4) {}^{2}  - (2 \sqrt{6} ) {}^{2} }  \\  \\  =  >  \frac{4 \sqrt{2}  + 4 \sqrt{3}  + 4 - 2 \sqrt{12} - 2 \sqrt{18} - 2 \sqrt{6}   }{16 - 24}  \\  \\  =  >  \frac{4 \sqrt{2}  + 4 \sqrt{3}  + 4 - 2 \sqrt{4 \times 3} - 2 \sqrt{9 \times 2}  - 2 \sqrt{6}  }{ - 8}  \\  \\  =  > we \: know \: that \:  \sqrt{4}  = 2 \: and \:  \sqrt{9}  = 9 \\  \\  =  >  \frac{4 \sqrt{2} + 4 \sqrt{3}  + 4 - 4 \sqrt{3}  - 6 \sqrt{2}   - 2 \sqrt{6} }{ - 8}   \\  \\  =  >  \frac{4 \sqrt{2}  - 6 \sqrt{2}  +  \cancel{4 \sqrt{3}}  \:   -  \cancel{  4 \sqrt{3} }  - 2 \sqrt{6}  + 4}{ - 8 }  \\  \\  =  >  \frac{ - 2 \sqrt{2}  - 2 \sqrt{6}  + 4}{ - 8}  \\  \\  =  >  \frac{ - 2( \sqrt{2}  +  \sqrt{6}  - 2)}{ - 8}  \\  \\  =  >  \frac{ \cancel - 2( \sqrt{2} +  \sqrt{6}  - 2) }{ \cancel - 8}  \\  \\  =  >  \frac{ \sqrt{2}  +  \sqrt{6}  - 2}{4}

Similar questions