Math, asked by nihal2225, 3 months ago

rationalize 1/√5+√3-√2​

Answers

Answered by mohankaujjwal36
0

Answer:

 \frac{1}{ \sqrt{5} }  +  \sqrt{3}  +  \sqrt{2 }  \\  =  \frac{1}{ \sqrt{5} }  \times  \frac{ \sqrt{5} }{ \sqrt{5} }  +  \sqrt{3 }  +  \sqrt{2}  \\  =   \frac{ \sqrt{5} }{5}  +  \sqrt{3}  +  \sqrt{2}  \\  =   \frac{ \sqrt{5}  + 5 \sqrt{3} + 5 \sqrt{2}  }{5}

is the answer

Answered by aryan073
2

Given :

Rationalize :

 \\  \bullet \bf \:  \frac{1}{ \sqrt{5} +  \sqrt{3}   -  \sqrt{2} }

Formula :

• For rationalizing the equation we multiply in numerator and denominator by its conjugate.

 \\  \bullet \bf \:  \frac{1}{a + b}  \implies \frac{1}{a + b}  \times  \frac{a - b}{a  -  b}  =  \frac{a - b}{ {(a}^{2}  -  {b}^{2}) }

 \\  \bullet \bf \:  \frac{1}{a - b}  \implies \ \:  \frac{1}{a - b}  \times  \frac{a + b}{a + b}  =  \frac{a + b}{ {a}^{2}  -  {b}^{2} }

Solution :

Given equation is :

 \\  \bullet \bf \frac{1}{ \sqrt{5}  +  \sqrt{3}  -  \sqrt{2} }

• By using Formula :

•Multiplying \bf{\sqrt{5}+\sqrt{3}- \sqrt{2}} in numerator and denominator we get,

  \\ \implies \sf \:  \frac{1}{ \sqrt{5}  +  \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{5} +  \sqrt{3}   +  \sqrt{2} }{ \sqrt{5}  +  \sqrt{3} +  \sqrt{2}  }

 \\  \implies \sf \:  \frac{ \sqrt{5}  +  \sqrt{3}  +  \sqrt{2} }{ {( \sqrt{5} +  \sqrt{3})  }^{2}  -  {( \sqrt{2} )}^{2} }

 \\  \implies \sf \:  \frac{ \sqrt{5}  +  \sqrt{3}  +  \sqrt{2} }{ {( \sqrt{5}) }^{2}  +  {( \sqrt{3}) }^{2}  + 2( \sqrt{5}  )( \sqrt{3}) - 2 }

  \\ \implies \sf \:  \frac{ \sqrt{5} +  \sqrt{3}  +  \sqrt{2}  }{5 + 3 - 2 \sqrt{15} - 2 }

  \\ \implies \sf \:   \frac{ \sqrt{5} +  \sqrt{3}   +  \sqrt{2} }{8 - 2 + 2 \sqrt{15} }

 \\  \implies \sf \:  \frac{ \sqrt{5} +  \sqrt{3}  +  \sqrt{2}  }{6  +  2 \sqrt{15} }

• Multiplying \bf{6-2 \sqrt{15} } in numerator and denominator we get,

 \\  \implies \sf \:  \frac{ \sqrt{5} +  \sqrt{3} +  \sqrt{2}   }{6 + 2 \sqrt{15} }  \times  \frac{6 - 2 \sqrt{15} }{6 - 2 \sqrt{15} }

 \\  \implies \sf \:  \frac{ \sqrt{5} (6 - 2 \sqrt{15} ) +  \sqrt{3} (6 - 2 \sqrt{15}) +  \sqrt{2}  (6 - 2 \sqrt{15} )}{ {(6)}^{2} -  {(2 \sqrt{15} )}^{2}  }

 \\  \implies \sf \:  \frac{6 \sqrt{5}  - 2 \sqrt{15 \times 5} + 6 \sqrt{3} - 2 \sqrt{45}   + 6 \sqrt{2}  - 2 \sqrt{30}  }{36 - 60}

 \\  \implies \sf \:  \frac{6 \sqrt{5}  - 10\sqrt{3} + 6 \sqrt{3}  - 6 \sqrt{5}  + 6 \sqrt{2} - 2 \sqrt{30}   }{ - 24}

 \\  \implies \sf \:   \frac{ - 4 \sqrt{3} + 6 \sqrt{2}  - 2 \sqrt{30}  }{ - 24}

 \\  \implies \sf \:  \frac{  \cancel- (4 \sqrt{3}  - 6 \sqrt{2}  + 2 \sqrt{30} )}{  \cancel- 24}

 \implies \boxed{ \bf{ \frac{4 \sqrt{3}  -   6\sqrt{2} + 2 \sqrt{30}  }{24} }}

Similar questions