Math, asked by badal62, 2 months ago

Rationalize -
1 /√5 +√3​

Answers

Answered by MonsieurBrainly
23

1/√5+√3 = (1)(√5-√3)/(√5+√3)(√5-√3).

Using identity (a+b)(a-b) = a^2 - b^2 :

= (√5-√3)/(5-3).

= (√5-√3)/2.

Ans: (√5-√3)/2.

Answered by NewGeneEinstein
7

Step-by-step explanation:

  \tt \hookrightarrow  \frac{1}{ \sqrt{5}  +  \sqrt{3} }  \\  \\   \tt \hookrightarrow  \frac{1( \sqrt{5}  -  \sqrt{3}) }{( \sqrt{5}   +  \sqrt{3} )( \sqrt{5} -  \sqrt{3} ) }   \\ \\   \tt \hookrightarrow  \frac{ \sqrt{5} -  \sqrt{3}  }{( \sqrt{5} ) {}^{2} - ( \sqrt{3} ) {}^{2}  }  \\    \\ \tt \hookrightarrow  \frac{ (\sqrt{5}  -  \sqrt{3} )}{5 - 3}  \\   \\  \tt \hookrightarrow  \frac{ (\sqrt{5}  -  \sqrt{3} )}{2}  \\  \\  \therefore \tt \: rationalised \: denominator \: is \:  \frac{ (\sqrt{5} -  \sqrt{3} ) }{2} .

Similar questions