Math, asked by AJAYJAAT6418, 1 year ago

Rationalize 1 upon root 7 minus 6

Answers

Answered by Anonymous
7

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

_____________________________

To Find :

 \sf{ we \:  \: have \:  \: to \:  \: rationalize \:  \frac{1}{ \sqrt{7} - 6 } }

______________________________

Solution :

Note :- When we rationalize a number firstly we have to change the sign of the denominator and then we have to multiply it by both numerator and denominator.

We can use rationalize method only when there is root in the denominator.

___________________________

Now, we are changing the sign and multiplying them.

 \sf{ \implies \: \frac{1}{ \sqrt{7} - 6 } } \\  \\  \sf{ \implies \:  \frac{1}{ \sqrt{7}  - 6}  \times  \frac{ \sqrt{7} + 6 }{ \sqrt{7} + 6 } } \\  \\   \star  \underline{\boxed{\sf{(a  - b)(a + b) =  {a}^{2} -  {b}^{2}}}} \\  \\  \sf{ \implies \frac{ \sqrt{7} + 6 }{ {\cancel{\sqrt{(7)}^{2}} - ( {6)}^{2} } } } \\  \\  \sf{ \implies \frac{ \sqrt{7}  + 6}{7 - 36} } \\  \\  \sf{ \implies \frac{  \sqrt{7} + 6  }{ - 29} } \\  \\  \sf{  \implies\frac{  - (\sqrt{7} + 6) }{29} }

\Large \hookrightarrow {\underline{\boxed{\sf{\frac{-(\sqrt{7} + 6)}{29}}}}}

\rule{200}{2}

#answerwithquality

#BAL


mysticd: Note : is wrong .
mysticd: Put = symbols instead of ok implies
Answered by Anonymous
14

\large{\underline{\underline{\mathfrak{\red{\sf{Answer-}}}}}}

\bold{\green{\sf{\dfrac{-(\sqrt7-6)}{29}}}}

\large{\underline{\underline{\mathfrak{\red{\sf{Explanation-}}}}}}

\bold{\sf{\dfrac{1}{\sqrt7-6}}}

Rationalising the denominator,

= \bold{\sf{\dfrac{1}{\sqrt7-6}}} × \bold{\sf{\dfrac{\sqrt7+6}{\sqrt7+6}}}

Now, we know that,

\large{\boxed{\sf{\underline{(a^2-b^2=(a+b)(a-b)}}}}

= \bold{\sf{\dfrac{\sqrt7+6}{\cancel{\sqrt7^2}-6^2}}} ( cancelling square and square root )

= \bold{\sf{\dfrac{\sqrt7+6}{7-36}}}

= \bold{\sf{\dfrac{\sqrt7+6}{-29}}}

= \bold{\green{\sf{\dfrac{-(\sqrt7-6)}{29}}}}

Note :

  • We can Rationalization method to remove the root from the denominator.

  • While solving these types of questions, you have to multiply and divide the denominator of given digit.

Similar questions