Math, asked by mayucute0, 7 months ago

rationalize 2 root 3/root 6+2

Answers

Answered by sanyamsancheti18
0

Answer:

3

Step-by-step explanation:

Given, 33−936+23=a+b3

squaring on both sides, we get,

(a+b3)2 =33−1936+23×33+19333+193

=6312+1803=52+303

⇒a+b3=52+303

=52+215×15×3

=27+25

=3

Answered by Flaunt
96

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

\huge\bold{:-2√3/√6+2}

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}3

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

\huge\bold{ =  >  \frac{2 \sqrt{3} }{ \sqrt{6}  + 2}}

Here, To rationalise we multiply with opposite signs of denominator to both Numerator and denominator .

\bold{ =  >  \frac{2 \sqrt{3} }{ \sqrt{6}  + 2}  \times  \frac{ \sqrt{6}  - 2 }{ \sqrt{6} - 2 }}

 \bold{=  >  \frac{2 \sqrt{3}( \sqrt{6}  - 2) }{ {( \sqrt{6} )}^{2} -  {(2)}^{2}  }}

\bold{ =  >  \frac{2 \sqrt{3}  \sqrt{6} - 4 \sqrt{3}  }{6 - 4}  =  \frac{2 \sqrt{3} \sqrt{6}   - 4 \sqrt{3} }{2}}

 \bold{=  >  \frac{2( \sqrt{3}  \sqrt{6} -  \sqrt{3})  }{2}  =  \sqrt{3}  \sqrt{6}  -  \sqrt{3}}

 \bold{\red{=  >  \sqrt{6}  \sqrt{3}  -  \sqrt{3}  =  \sqrt{3} ( \sqrt{6}  - 1)}}

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions