Math, asked by aditipawar079, 2 months ago

rationalize √3-1/√3+1​

Answers

Answered by googleuser51
1

Step-by-step explanation:

Hop.e it he.lps u.hh.

Ple.ase fo.llow m.e.

Attachments:
Answered by Anonymous
55

Answer:

Question:

{ \sf{Rationalize  :  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1} }} \\

Solution:

Rationalizing the denominator;

 : { \implies{ \sf{ \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 } }}} \\  \\  : { \implies{ \sf{ \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 } \times  \frac{ \sqrt{3} - 1 }{ \sqrt{3}   - 1} }}} \\  \\  : { \implies{ \sf{  \frac{ {( \sqrt{3}  - 1)}^{2} }{ { \sqrt{3} }^{2} -  {1}^{2}  }   }}} \\  \\  : { \implies{ \sf{ \frac{ { (\sqrt{3} )}^{2} +  {1}^{2}   - 2( \sqrt{3}) (1)}{3 - 1} }}} \\  \\  : { \implies{ \sf{ \frac{3 + 1 - 2 \sqrt{3} }{2}  }}} \\  \\  : { \implies{ \sf{ \frac{4 - 2 \sqrt{3} }{ 2}  }}} \\  \\  : { \implies{ \sf{ \frac{2(2 -  \sqrt{3}) }{2} }}} \\  \\  : { \implies{ \sf{2 -  \sqrt{3} }}}

Used formulae:

  • (a - b) ² = a² + b² - 2ab
  • a² - b² = (a + b) (a - b)
Similar questions