Math, asked by prashantdhalwal19, 10 months ago

rationalize. 3+4i/2-3i​

Answers

Answered by MrChauhan96
383

\huge\bf{Given}

\sf{\frac{3+4i}{2-3i}}

\huge\bf{Explanation:-}

\sf{To\: simplify\:the\:fraction\:we\:required\:to\:have}\\{\sf{\:a\:rational\:denominator.}}

\small\sf{This\: is\:achieved\:by\:multiplying\: the\: Numerator\:or\:}\\{\sf{ denominator\:by\:the\:complex\:conjugate\:of}}\\{\sf{the\:complex\:number\:of\:the\:denominator}}

\small\bf{\:The\:conjugate\:of\: (2-3i)\:is\:(2+3i)}

  • \large\bf{\frac{3+4i}{2-3i}={\frac{(3+4i)(2+3i)}{(2-3i)(2+3i)}}}

\sf{Distributing\: the\: numerator\:and\: denominator}\\{\sf{using\:the\:FOIL\:method}}

  • \large\bf{\frac{6+9i+8i+12i^{2}}{4+6i-6i-9i^{2}}}

\small\bf{\boxed{Reminder\:i^{2}=\sqrt{-1}=\:-1}}

  • \large\bf{\frac{6+17i+12(-1)}{4+\cancel6i-\cancel6i-9(-1)}}

  • \large\bf{\frac{6+17i-12}{4+9}}

  • \large\bf{\frac{-6+17i}{13}}

\bold{\small}\rm{Expressing\: in\: standard\:form }

  • \large\bf{\boxed{\frac{-6}{13}+{\frac{17}{13}i}{\:\:\:\:\:Answer}}}

.

.

\bold{\small}\bf{Hope\:It\:Help\:You}

\bold{\small}\bf{Be\:Brainly}

Similar questions