Math, asked by Aashir096, 8 months ago

rationalize 3/√5+√2​

Answers

Answered by llSecreTStarll
2

\underline{\underline{\orange{\textbf{Step - By - Step - Explanation : -}}}}

  • we need to Rationalize the denominator of 3/5+ √2.

For rationalizing the denominator we have to multiply the numerator and the denominator by denominator but we should change the sign.

If

  • (+) into (-)
  • (-) into (+)

 \sf \:   = \frac{3}{ \sqrt{5}  +  \sqrt{2} }  \\  \\ \sf \:  =  \frac{3}{ \sqrt{5} +  \sqrt{2}  }  \times  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5} -  \sqrt{2}  }  \\  \\ \sf \:   = \frac{3( \sqrt{5}  -  \sqrt{2}) }{( \sqrt{5}  +  \sqrt{2})( \sqrt{5} -  \sqrt{2)}   }  \\  \\ \sf \: by \: using \: identity \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{3( \sqrt{5}  -  \sqrt{2}) }{ {( \sqrt{5}) }^{2} -(  \sqrt{2} {)}^{2}   }  \\  \\ \sf \:  =  \frac{3( \sqrt{5} -  \sqrt{2} ) }{5 - 2}  \\  \\ \sf \:  =  \frac{ \cancel{3}( \sqrt{5} -  \sqrt{2}  )}{ \cancel3}  \\  \\ \bf =  \sqrt{5}  -  \sqrt{2}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions