Math, asked by arohi84, 1 year ago

rationalize 4 + 3 root 5 upon 4 minus 3 root 5

Answers

Answered by ShuchiRecites
4
\textbf{\huge{\underline{ Hello Mate! }}}

To rationalize we must change the dinominator terms. Lets see!

 =  \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  \\  =  \frac{4 +  3\sqrt{5} }{4 - 3 \sqrt{5} }  \times  \frac{4 + 3 \sqrt{5} }{4 + 3 \sqrt{5} }  \\  =  \frac{ {(4 + 3 \sqrt{5} )}^{2} }{ {4}^{2} -  {(3 \sqrt{5}) }^{2}  }  \\  =  \frac{ {4}^{2} +  {(3 \sqrt{5})  }^{2}   + 2(4)(3 \sqrt{5} )}{16 - 9 \times 5}  \\  =  \frac{16 + 25 + 24 \sqrt{5} }{16 - 25}  \\  =  \frac{41 + 24 \sqrt{5} }{ - 9}  \\  =   - \frac{(41 + 24 \sqrt{5}  )}{9}

Hence, we get to answer. Please comment if any doubt is there regaurding question.

\textbf{ Have great future ahead! }
Answered by ans81
2
HEY MATE HERE IS YOUR ANSWER

 \rule {168}{2}

 \huge = > \frac{ 4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }

 \huge = > \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} } \times \frac{4 + 3 \sqrt{5} }{4 + 3 \sqrt{5} }

 \huge = > \frac{(4 + 3 { \sqrt{5}) }^{2} }{ {4}^{2} - (3 { \sqrt{5} )}^{2} }

 \huge = > \frac{ {4}^{2} + (3 { \sqrt{2} )}^{2} + 2(4)(3 \sqrt{5}) }{16 - 9 \times 5}


 \huge = > \frac{16 + 25 + 24 \sqrt{5} }{16 - 25}

 \huge = > \frac{41 + 24 \sqrt{5} }{ - 9}

 \huge = > - \frac{(41 + 25 \sqrt{5)} }{9}

 \rule {135} {2}

Hope it will help you

@thanksforquestion

@bebrainly

ShuchiRecites: It will be 24 root 5 mate not 25 root 5
Similar questions