Math, asked by dharmenderkr1056, 8 months ago

rationalize a denominator of the following: √3-1\√3+1.
please tell me​

Answers

Answered by Anonymous
23

Answer:

▶2 + √3

Explanation:

Given that,

▶ √3 - 1/√3 + 1

▶ √3 - 1/√3 + 1 × √3 - 1 /√3 - 1

▶ (√3 - 1)(√3-1)/(√3 + 1)(√3 - 1)

▶ (√3 + 1)²/(√3)² - (1)²

▶ 3 + 2√3 + 1/3 - 1

▶ 4 + 2√3 /2

▶ 2(2 + √3)/2

▶ 2 + √3

Hence,

  • √3-1/√3+1 = 2+√3.

Some Algebraic Identities :

  • (a + b)² = a² + b² + 2ab²

  • (a - b)² = a² - b² + 2ab

  • (a² - b²) = (a + b) (a - b)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ + 3ab(a + b)

  • (x + a) (x + b) = x² + (a+b)x + ab
Answered by MathWizzMan
26

 \frac{√3 \:  - 1}{√3 + 1}

 = \frac{√3 \:  - 1 }{√3 + 1 }  \frac{ \times }{ \times } \frac{√3 \:  - 1}{√3  -  1}

 =  \frac{(√3 - 1)^{2}  }{(√3)^{2} - (1)^{2}  }

 = \frac{3  \:  \: +  \:  \: 1 \:  \:  \: - 2  \: \:  \: √3}{3 - 1}

 = \frac{4 - 2 \:  \: √3}{2}

 = \frac{2(2 - √3)}{2}

Numerator - 2 and denominator 2 are canceled

\huge\red{\therefore} 2 - √3

Similar questions