Math, asked by Dhakasaab777, 9 months ago

Rationalize denominator 1 by 5 + under root 2

Answers

Answered by debjitba25
0

\frac{1}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}-\sqrt{2}}{3}

Step-by-step explanation:

Rationalising\: the \: \\denominator \: of \: \frac{1}{\sqrt{5}+\sqrt{2}}

Multiply numerator and denominator by (√5-√2), we get

=\frac{\sqrt{5}-\sqrt{2}}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}

=\frac{\sqrt{5}-\sqrt{2}}{(\sqrt{5})^{2}-(\sqrt{2})^{2}}

/* By algebraic identity:

(a+b)(a-b)=a²-b²*/

=\frac{\sqrt{5}-\sqrt{2}}{5-2}

=\frac{\sqrt{5}-\sqrt{2}}{3}

/* Denominator rationalised */

Therefore,

\frac{1}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}-\sqrt{2}}{3}

Answered by ItzAditt007
1

{\huge{\pink{\underline{\underline{\purple{\mathbb{\bold{\mathcal{AnSwEr..}}}}}}}}}

{\large{\blue{\bold{\underline{IDs\:Used:-}}}}}

=》 (a+b)(a-b) = a²-b².

{\large{\blue{\bold{\underline{Given:-}}}}}

\implies \frac{1}{5 +  \sqrt{2} } \\  \\  =  \frac{1}{5 +  \sqrt{2} } \times  \frac{5 -  \sqrt{2} }{5 -  \sqrt{2} } \\  \\  =  \frac{5 -  \sqrt{2} }{( {5})^{2} - ( \sqrt{2}) {}^{2}}  \\  \\  =  \frac{5 -  \sqrt{2} }{25 - 2} \\  \\  =  \frac{ 5 -  \sqrt{2} }{23}

Hope this will help you if it HELPS then plz mark my answer as BRAINLIEST.

And remember to always keep a smile on face:D

<marquee>✌✌THANKS✌✌</marquee>

Similar questions