Math, asked by shadowispro800233, 1 month ago

rationalize denominator 2√3-√5/2√2+3√3​

Answers

Answered by amaira72
1

Answer:

here is your answer with full explanation

Attachments:
Answered by MrImpeccable
8

ANSWER:

To Rationalize:

  • (2√3 - √5)/(2√2 + 3√3)

Solution:

We are given that,

\implies\dfrac{2\sqrt3-\sqrt5}{2\sqrt2+3\sqrt3}

Multiplying and dividing by (2√2 - 3√3),

\implies\dfrac{2\sqrt3-\sqrt5}{2\sqrt2+3\sqrt3}\times\dfrac{2\sqrt2-3\sqrt3}{2\sqrt2-3\sqrt3}

So,

\implies\dfrac{(2\sqrt3-\sqrt5)(2\sqrt2-3\sqrt3)}{(2\sqrt2+3\sqrt3)(2\sqrt2-3\sqrt3)}

We know that,

\hookrightarrow(a+b)(a-b)=a^2-b^2

So,

\implies\dfrac{(2\sqrt3-\sqrt5)(2\sqrt2-3\sqrt3)}{(2\sqrt2+3\sqrt3)(2\sqrt2-3\sqrt3)}

\implies\dfrac{4\sqrt6-18-2\sqrt{10}+3\sqrt{15}}{(2\sqrt2)^2-(3\sqrt3)^2}

\implies\dfrac{4\sqrt6-18-2\sqrt{10}+3\sqrt{15}}{8-27}

So,

\implies\dfrac{4\sqrt6-18-2\sqrt{10}+3\sqrt{15}}{-19}

\implies\dfrac{-(4\sqrt6-18-2\sqrt{10}+3\sqrt{15})}{19}

\implies\dfrac{-4\sqrt6+18+2\sqrt{10}-3\sqrt{15}}{19}

On rearranging,

\bf\implies\dfrac{18-4\sqrt6+2\sqrt{10}-3\sqrt{15}}{19}

Formula Used:

  • (a+b)(a-b)=a^2-b^2
Similar questions