Math, asked by vaishnavipm09, 2 months ago

Rationalize denominator​

Attachments:

Answers

Answered by Salmonpanna2022
44

Step-by-step explanation:

Question:

  • If √5+√6/√5-√6 = a+b√30, then find the value of a and b ?

To find:

  • the value of a and b ?

Solution:

Let's solve the given problem

We have,

 \mathrm{ \frac{ \sqrt{5} +  \sqrt{6}  }{ \sqrt{5}  -  \sqrt{6} }  = a + b \sqrt{30} } \\

The denominator is √5-√6. Multiplying the numerator and denomination by √5+√6, we get

⟹ \frac{ \sqrt{5}  +  \sqrt{6} }{ \sqrt{5} -  \sqrt{6}  } \times  \frac{ \sqrt{5}  +  \sqrt{6} }{ \sqrt{5}  +  \sqrt{6}  }   \\  \\

⟹ \frac{( \sqrt{5} +  \sqrt{6} )( \sqrt{5} +  \sqrt{6}  ) }{( \sqrt{5}  -  \sqrt{6})( \sqrt{5}  +  \sqrt{6})  }  \\

⬤ Applying Algebraic Identity

  • (a+b)(a+b) = (a+b)² = a² + b² + 2ab to the numerator and
  • (a-b)(a+b) = a² - b² to the denominator

We get,

⟹ \frac{( \sqrt{5} +  \sqrt{6}  {)}^{2}  }{( \sqrt{5}  {)}^{2}  - ( \sqrt{6} {)}^{2}  }  \\  \\

⟹ \frac{( \sqrt{5}  {)}^{2}  + ( \sqrt{6} {)}^{2} + 2 \sqrt{5}   \:  \sqrt{6}  }{3 - 2}  \\  \\

⟹ \frac{5 + 6 + 2 \sqrt{5} \:   \sqrt{6} }{3 - 2}  \\  \\

⟹ \frac{11 + 2 \sqrt{5 \times 6} }{1}  \\  \\

⟹ \frac{11 + 2 \sqrt{30} }{1}  \\  \\

⟹11 + 2 \sqrt{30}  \\

.°. \: a + b \sqrt{30}  = 11 + 2 \sqrt{30}  \\

On comparing the value of

a = 11 and b = 2

Answer:

  • Hence, the value of a = 11 and b = 2

Used Formulae:

  • a+b)(a+b) = (a+b)² = a² + b² + 2ab
  • (a-b)(a+b) = a² - b²

# Brainly

Learn more:

If (√2+1)²/3-√2 = a+b√3 , find a and b.

https://brainly.in/question/- - - -

Similar questions