Math, asked by ks8209671345, 1 month ago

rationalize in the form of A and B​

Attachments:

Answers

Answered by richapariya121pe22ey
1

Step-by-step explanation:

 \frac{5 +  \sqrt{3} }{7 - 4 \sqrt{3} }  \\  =  \frac{5 +  \sqrt{3} }{7 - 4 \sqrt{3} }  \times  \frac{7 + 4 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  =  \frac{(5 +  \sqrt{3} )(7 + 4 \sqrt{3}) }{(7 - 4 \sqrt{3} )(7 + 4 \sqrt{3}) }  \\  =  \frac{(5 \times 7) + (5 \times 4 \sqrt{3}) + ( \sqrt{3}   \times 7) + ( \sqrt{3}   \times 4 \sqrt{3})  }{ {7}^{2} -  {(4 \sqrt{3} )}^{2}  }  \\  =  \frac{35 + 20 \sqrt{3} + 7 \sqrt{3}   + 12}{49 - (16 \times 3)}  \\  =  \frac{47 + 27 \sqrt{3} }{49 - 48}  \\  = 47 + 27 \sqrt{3}

a = 1, b = 27

Similar questions