Math, asked by harshikamal627, 1 month ago

rationalize it

FULL SOLUTIONS WILL GET BRAINLISTED ​

Attachments:

Answers

Answered by Anonymous
1

Answer:

I solved it in my computer. Check attachment ❄️

Attachments:
Answered by kailashmannem
11

 \Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Given:-}}}}}}}

  •  \sf \dfrac{\sqrt{5} \: - \: 2}{\sqrt{5} \: + \: 2}

 \Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Find:-}}}}}}}

  • Rationalise the given fraction

\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}}

  •  \sf \dfrac{\sqrt{5} \: - \: 2}{\sqrt{5} \: + \: 2}

We know that,

  • Rationalising factor of denominator i.e

  •  \sf \sqrt{5} \: + \: 2 \: is \: \sqrt{5} \: - \: 2

Multiplying numerator and denominator with  \sf \sqrt{5} \: - \: 2 ,

  •  \sf \dfrac{\sqrt{5} \: - \: 2}{\sqrt{5} \: + \: 2} \: * \: \dfrac{\sqrt{5} \: - \: 2}{\sqrt{5} \: - \: 2}

  •  \sf \dfrac{(\sqrt{5} \: - \: 2)^2}{(\sqrt{5} \: + \: 2) \: * \: (\sqrt{5} \: - \: 2)}

  •  \sf \dfrac{(\sqrt{5})^2 \: + 2^2 \: - \: 2 \: * \: \sqrt{5} \: * \: 2}{(\sqrt{5})^2 \: - \: 2^2}

  •  \sf \dfrac{5 \: + \: 4 \: - 4\sqrt{5}}{5 - 4}

  •  \sf \dfrac{9 \: - \: 4\sqrt{5}}{1}

  •  \sf 9 \: - \: 4\sqrt{5}

Therefore,

  •  \sf \dfrac{\sqrt{5} \: - \: 2}{\sqrt{5} \: + \: 2} \: = \: 9 \: - \: 4\sqrt{5}
Similar questions