Math, asked by harshikamal627, 3 months ago

rationalize it!

Right answer with full solution will get brainlisted​

Attachments:

Answers

Answered by KnightLyfe
14

Answer:-

\frac{3+√2}{3-√2}

\frac{3+√2}{3-√2} × \frac{3+√2}{3+√2}

\frac{(3+√2)²}{3²-(√2)²}

\frac{3²+2+6√2}{9-2}

\frac{9+2+6√2}{7}

\frac{11+6√2}{7}

Answered by Salmonpanna2022
3

Answer:

⟹ \frac{11 + 6 \sqrt{2} }{7}  \:  \:   \tt \red{Ans }.\\  \\

Step-by-step explanation:

Given that:-

 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} } \\  \\

What to do:-

To rationalise the denominator.

Solution:-

We have,

 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} } \\  \\

The denominator is 3-√2. Multiplying the numerator and denominator by 3+√2,

We get

⟹ \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} } \\  \\

⟹ \frac{(3 +  \sqrt{2} )(3 +  \sqrt{2} )}{(3 -  \sqrt{2})(3 +  \sqrt{2}  )}  \\  \\

⬤ Applying Algebraic Identity

(a+b)(a+b) = (a+b)² = a²+2ab+b² to the numerator and

(a-b)(a+b) = a² - b² to the denominator

We get,

⟹ \frac{(3 +  \sqrt{2}  {)}^{2} }{(3 {)}^{2} - ( \sqrt{2}  {)}^{2}  }  \\  \\

⟹ \frac{ {3}^{2}  + 2 \times 3 \sqrt{2}  + ( \sqrt{2}  {)}^{2} }{9 - 2}  \\  \\

⟹ \frac{9 + 6 \sqrt{2}  + 2}{7}  \\  \\

⟹ \frac{11 + 6 \sqrt{2} }{7}  \:  \:   \tt \red{Ans }.\\  \\

Hence, the denominator is rationalised.

Know more Algebraic Identities:-

(a+ b)² = a² + b² + 2ab

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

I hope it's help with...☺

Similar questions