Math, asked by Anonymous, 10 months ago

RATIONALIZE OF DENOMINATOR:

 \frac{1}{ \sqrt{8 } } \\ \\ \\ \\ \frac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3} + \sqrt{2} }

Answers

Answered by tahseen619
4

Answer:

1)

 \frac{ \sqrt{8} }{8}  \\

2)

5 - 2 \sqrt{6}

Step-by-step explanation:

Rationalizing is so easy , just multiple the denominator by the conjugate surds or Rationalizing factor .

Solution

 \frac{1}{ \sqrt{8} }  \\  \\  \frac{1}{ \sqrt{8} }  \times  \frac{ \sqrt{8} }{ \sqrt{8} }  \\  \\   \frac{ \sqrt{8} }{ \sqrt{8}. \sqrt{8}  }  \\  \\   \frac{ \sqrt{8} }{8}

ii)

 \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \\  \\  \frac{( \sqrt{3} -  \sqrt{2} )( \sqrt{3}   -  \sqrt{2})  }{( \sqrt{3}  +  \sqrt{2})( \sqrt{3}   -  \sqrt{2} )}  \\  \\  \frac{ {( \sqrt{3}  -  \sqrt{2} )}^{2} }{ {( \sqrt{3} )}^{2}   -  { (\sqrt{2} )}^{2} }  \\  \\   \frac{ ({ \sqrt{3} )}^{2}  +  { (\sqrt{2} )}^{2}  - 2. \sqrt{2}. \sqrt{3}  }{3 - 2}  \\  \\  \frac{3 + 2 - 2 \sqrt{6} }{1}  \\  \\ 5 - 2 \sqrt{6}

Answered by Anonymous
5

Answer:

\huge\fcolorbox{black}{pink}{Answer-}

Q.1)

  =  >  \frac{1}{ \sqrt{8} }  \\  =  >  \frac{1 \times  \sqrt{8} }{ \sqrt{8 }  \times  \sqrt{8} }  \\  =  >  \frac{ \sqrt{8} }{8}  \\  =  >  \frac{2 \sqrt{2} }{8}  \\  =  >  \frac{ \sqrt{2} }{4}

Q.2)

root3 - root2 / root3 + root2

= (root3-root2)(root3-root2)/(root3+root)(root3-root2)

= (root3-root2)^2/3-2

=3- 2root6 +2/ 1

Similar questions