Math, asked by ArUSHISHArma, 1 year ago

rationalize
 \sqrt{3 } + 1 \div 2 \sqrt{2}  -  \sqrt{3}

Answers

Answered by DaIncredible
1
Heya friend,
Here is the answer you were looking for:
 \frac{ \sqrt{3}  + 1}{2 \sqrt{2} -  \sqrt{3}  }  \\

On rationalizing the denominator we get,

 =  \frac{ \sqrt{3}  + 1}{2 \sqrt{2} -  \sqrt{3}  }  \times  \frac{2 \sqrt{2}  +  \sqrt{3} }{2 \sqrt{2} +  \sqrt{3}  }  \\

Using the identity :

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

 =  \frac{ \sqrt{3} (2 \sqrt{2} +  \sqrt{3}  ) + 1(2 \sqrt{2} +  \sqrt{3})  }{ {(2 \sqrt{2} )}^{2} -  {( \sqrt{3} )}^{2}  }  \\  \\  =  \frac{2 \sqrt{6} + 3 + 2 \sqrt{2}  +  \sqrt{3}  }{8 - 3}  \\  \\  =  \frac{3 + 2 \sqrt{2} +  \sqrt{3} + 2 \sqrt{6}   }{5}

Hope this helps!!!

@Mahak24

Thanks...

ArUSHISHArma: thanks
DaIncredible: my pleasure
Similar questions