Math, asked by valvigulabsing52, 8 months ago

rationalize the demominater and find the value of a&b
 \frac{2 +  \sqrt{3} }{2 -  \sqrt{3 } }  = a + b \sqrt{3}

Answers

Answered by amansharma264
1

Answer

a = 7 and b = 4

EXPLANATION.

TO FIND THE VALUE OF A AND B.

  \bold{ \longrightarrow{ \frac{2 \:  +   \sqrt{3}  }{2 \:  -  \:  \sqrt{3} } } =  \: a \:  +  \: b \sqrt{3}}

Rationalize the term

 \bold{\longrightarrow{ \frac{2 \:  +  \:  \sqrt{3} }{2 \:  -  \:  \sqrt{3} } } \times  \:  \frac{2 \:  +  \:  \sqrt{3} }{2 \:   +  \:  \sqrt{3} } }

  \bold{\implies{ \frac{(2 +  \sqrt{3}) {}^{2}  }{(2 \:  -  \:  \sqrt{3})(2 \:  +  \:  \sqrt{3})  }} }

  \bold{\implies{ \frac{4 \:  +  \: 3 \:  +  \: 4 \sqrt{3} }{4 \:  -  \: 3} }}

  \bold{\implies{ \frac{7 \:  +  \: 4 \sqrt{3} }{1} } = a \:  +  \: b \sqrt{3}}

Therefore,

value of a = 7

value of b = 4

Similar questions