Math, asked by valvigulabsing52, 9 months ago

rationalize the demominater and find the value of a&b
 \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  = a + b \sqrt{3}

Answers

Answered by amankumaraman11
0

We have,

  • To find the value of a & b in the (above) expression

Given,

 \boxed{ \boxed{\Large{\rm \frac{2 + \sqrt{3} }{2 - \sqrt{3} } = a + b \sqrt{3} }}}\\

Now,

  • Solving LHS,

 \boxed{\dag }\:  \: \:  \: \:  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \times \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\  => \frac{ {(2 +  \sqrt{3} )}^{2} }{ {(2)}^{2}  -   {( \sqrt{3} )}^{2}  } \:  \:   =  \frac{4 + 3 + 4 \sqrt{3} }{4 - 3}  \\  \\  = > \frac{7 + 4 \sqrt{3} }{1} \:  \:  \:   =  \underline{ \: 7 + 4 \sqrt{3}  \: }

Now,

  • Comparing LHS to RHS, we conclude that,

 \bullet \:  \boxed{ \bf \text{Value of    \:a}  =  \:  \:  \:  \red4 \:  }\\ \bullet \:  \boxed{ \bf \text{Value of  \:b} =   \red{- 3}}

Thus,

 \rm  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{2 + \sqrt{3} }{2 - \sqrt{3} } = 4+   ( - 3)\sqrt{3} \\

Similar questions