Math, asked by rajputkaptans, 9 months ago

Rationalize the denomina
in the
follwoing

1×√5+√2​

Answers

Answered by atharvshree
0

Answer:

it is already rationalized

Step-by-step explanation:

There is no denominator in your question

Answered by Anonymous
11

\bf\therefore\red{NOTE:-\: GIVEN\: QUESTION \:IS\: WRONG.}

\large\underline\bold\purple{CORRECT \:QUESTION,}

\bf\dashrightarrow \dfrac{1}{\sqrt{5}+ \sqrt{2}}

ANSWER

\large\underline\bold{GIVEN,}

\bf\dashrightarrow \dfrac{1}{\sqrt{5}+ \sqrt{2}}

\large\underline\bold{TO,RATIONALISE\:THE\:DENOMINATOR}

IDENTITY IN USE,

\large{\boxed{\bf{ \star\:\: (a+b)(a-b)=a^2-b^2 \:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\therefore  \dfrac{1}{\sqrt{5}+ \sqrt{2}}

\sf\therefore\blue{multiplying \:both \:numerator\: and \:denominator\: by \:\sqrt{5}- \sqrt{2}}

\sf\implies  \dfrac{1}{\sqrt{5}+ \sqrt{2}} \times \dfrac{\sqrt{5}- \sqrt{2}}{\sqrt{5}- \sqrt{2}}

\sf\implies \dfrac{\sqrt{5}- \sqrt{2}}{(\sqrt({5})^2- (\sqrt{2})^2}\:---\boxed{using\:given\: identity}

\sf\implies \dfrac{\sqrt{5}- \sqrt{2}}{5-3}

\sf\implies \dfrac{\sqrt{5}- \sqrt{2}}{2}

\large{\boxed{\bf{ \star\:\: \dfrac{\sqrt{5}- \sqrt{2}}{2}  \:\: \star}}}

\large\underline\bold{THE\:RATIONALISED\: DENOMINATOR\:IS\:\dfrac{\sqrt{5}- \sqrt{2}}{2}}

_____________________

Similar questions