Math, asked by abhishekpatel2214, 9 months ago

Rationalize
the
Denominar of 1/√8-√7​

Answers

Answered by Anonymous
3

\Large\mathfrak{\underline{Answer}}

\normalsize\textsf{$\sqrt{8}+\sqrt{7}$}

\Large\textbf{\underline{Given\: :\:}}

\normalsize\Longrightarrow\textsf{$\dfrac{1}{\sqrt{8}-\sqrt{7}}$}

\large\textsf{To rationalise, we will multiply}

\large\textsf{the numerator and denominator}

\large\textsf{by $\sqrt{8}+\sqrt{7}$.}

\normalsize\Longrightarrow\textsf{$\dfrac{1}{\sqrt{8}-\sqrt{7}}\:\times\:\dfrac{\sqrt{8}+\sqrt{7}}{\sqrt{8}+\sqrt{7}}$}

\normalsize\Longrightarrow\textsf{$\dfrac{\sqrt{8}+\sqrt{7}}{{\sqrt{8}^2}+{\sqrt{7}^2}}$}

\normalsize\Longrightarrow\textsf{$\dfrac{\sqrt{8}+\sqrt{7}}{8-7}$}

\normalsize\Longrightarrow\textsf{$\sqrt{8}+\sqrt{7}$}

\large\therefore\textbf{The\: Answer\:is\:$\sqrt{8}+\sqrt{7}$}

\Large\textbf{\underline{Note}}

\large\odot\:\:\:\textsf{Rationalising is the removal of }

\large\textsf{square root from denominator}

\large\textsf{by multiplying the fraction with}

\large\textsf{rationalising factor.}

\large\odot\:\:\:\textsf{Rationalising Factor is a }

\large\textsf{number which is multiplied to }

\large\textsf{a fraction to remove the square}

\large\textsf{root from the denominator of }

\large\textsf{the fraction. In the above question}

\large\textsf{,the rationalising factor is }

\large\textsf{$\sqrt{8}+\sqrt{7}$}

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

Answered by amankumaraman11
1

 \bf \huge \dag \:  \:  \frac{1}{ \sqrt{8} -  \sqrt{7}  }  \\ \\ \sf   =  >  \frac{1}{ \sqrt{8} -  \sqrt{7}  }  \times  \frac{ \sqrt{8} +  \sqrt{7}  }{ \sqrt{8} +  \sqrt{7}  }  \\  \\   \sf{=  >  \frac{1( \sqrt{8}  +  \sqrt{7} )}{ {( \sqrt{8} )}^{2}   -  {( \sqrt{7} )}^{2} }  }\\  \\  \sf =  >  \frac{ \sqrt{8}  + \sqrt{7}  }{8 - 7}   \:  \: =  \frac{ \sqrt{8}  +  \sqrt{7} }{1}  \\ \implies\large   \boxed{ \frak{  \sqrt{ \red8}  +  \sqrt{ \red7}} }  \\

Hence,  \bf{ \sqrt{ \red8}  +  \sqrt{ \red7} } is the rationalised form of   \tt  \frac{1}{ \sqrt{8}  -  \sqrt{7} }

Similar questions