Math, asked by wangmochuskit, 4 months ago

rationalize the denominater​

Attachments:

Answers

Answered by AestheticSoul
4

Question :

 \mapsto \tt  \dfrac{ \sqrt{3}  + 1}{2 \sqrt{2}  - 3}

Solution :

\quad\longmapsto \sf \dfrac{ \sqrt{3}  + 1}{2 \sqrt{2}  - 3}  \\  \\  \quad\longmapsto \sf  \frac{ \big( \sqrt{3} + 1 \big) \big(2 \sqrt{2}   + 3 \big) }{ \big(2 \sqrt{2}  -3 \big) \big(2 \sqrt{2} + 3 \big) }  \\  \\  \quad\red{ \bigstar} \sf  \:  \: using \: identity  \leadsto \\  \\  \quad \sf  \overline{\underline{  \purple{(a - b)(a + b) =  {a}^{2}  -  {b}^{2}}}}

\quad\longmapsto \sf  \dfrac{ \big( \sqrt{3} + 1 \big) \big(2 \sqrt{2} + 3 \big) }{ \big(2 \sqrt{2} \big)^{2}   - (3)^{2}} \\  \\ \quad \\ \longmapsto \sf  \dfrac{ \big( \sqrt{3} + 1 \big) \big(2 \sqrt{2} + 3 \big) }{ \big(2 \sqrt{2} \big)(2 \sqrt{2})   - 9}

\quad\longmapsto \sf  \dfrac{ \big( \sqrt{3} + 1 \big) \big(2 \sqrt{2}  +  3 \big) }{ 8   - 9} \\  \\ \longmapsto \sf  \dfrac{ \big( \sqrt{3} + 1 \big) \big(2 \sqrt{2}  +  3 \big) }{ - 1} \\  \\ \longmapsto \sf  \dfrac{\sqrt{3} \big(2 \sqrt{2}  +  3 \big) + 1(2 \sqrt{2}   + 3)}{ - 1}

\longmapsto \sf  \dfrac{\sqrt{3} \big(2 \sqrt{2}  +  3 \big) + 1(2 \sqrt{2}   + 3)}{ - 1} \\  \\ \longmapsto \sf  \dfrac{2 \sqrt{6}  +  3 \sqrt{3}  + 2 \sqrt{2}   + 3}{ - 1} \\  \\  \quad \longmapsto \sf  -  \big(2 \sqrt{6}  + 3 \sqrt{3}  + 2 \sqrt{2}  + 3 \big) \\  \\  \quad \longmapsto \sf  - 2 \sqrt{6} - 3 \sqrt{3}   - 2 \sqrt{2}  - 3

_______________________________

Some useful identitites :-

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • (a + b)³ = a³ + b³ + 3ab(a + b)
  • (a - b)³ = a³ - b³ - 3ab(a - b)

Signs are changed on the following bases :-

  • (+) (+) = +
  • (+) (-) = -
  • (-) (-) = +
  • (-) (+) = -
Similar questions
Math, 4 months ago