Math, asked by BatulMalkapurwala, 2 months ago

rationalize the denominater

6/2√3 + √6​

Answers

Answered by Khushi20993
11

Answer:

Solution

 \frac{ \sqrt{6} }{ \sqrt{2} }  +  \sqrt{3 }  \\  \frac{ \sqrt{6} }{ \sqrt{2} }  +  \sqrt{3}  \times  \sqrt{2}  -     \frac{ \sqrt{3} }  { \sqrt{2} }  -  \sqrt{3}  \\  \sqrt{6}  ( \frac{ \sqrt{2 -  \sqrt{3} } }{2 - 3}  )  \\  -  \sqrt{6}  ( \sqrt{2 -  \sqrt{3} } )  \\ -  \sqrt{12}  +  \sqrt{18}

Answered by SachinGupta01
9

\large{ \sf \underline{Solution - }}

\bf 1^{st} \: Method : [ Without \: using \: identity]

To rationalise :

\sf \implies\dfrac{6 }{2 \sqrt{3} +  \sqrt{6}  }

➢ Here the denominator is in the form of (a+b). Rationalising factor of (a+b) is (a-b). So, rationalising factor of (2√3+√6) is (2√3-√6). We will multiply (2√3-√6) with both the numerator and denominator to rationalise the denominator.

\sf \implies\dfrac{6 }{2 \sqrt{3} +  \sqrt{6}  }  \times  \dfrac{2 \sqrt{3}  -  \sqrt{6}}{2 \sqrt{3}  -  \sqrt{6}}

Combine fractions

\sf \implies   \dfrac{6(2 \sqrt{3}  -  \sqrt{6})}{(2 \sqrt{3} +  \sqrt{6})(2 \sqrt{3}  -   \sqrt{6})}

\sf \implies   \dfrac{6(2 \sqrt{3}  -  \sqrt{6})}{2 \sqrt{3}(2 \sqrt{3}  -   \sqrt{6}) +  \sqrt{6}(2 \sqrt{3}  -   \sqrt{6}) }

\sf \implies   \dfrac{6(2 \sqrt{3}  -  \sqrt{6})}{12 - 6 \sqrt{2}  + 6 \sqrt{2}  - 6 }

\sf \implies   \dfrac{6(2 \sqrt{3}  -  \sqrt{6})}{6 - 6 \sqrt{2}  + 6 \sqrt{2}  }

\sf \implies   \dfrac{6(2 \sqrt{3}  -  \sqrt{6})}{6 - 0  }

\sf \implies   \dfrac{ \cancel{6}(2 \sqrt{3}  -  \sqrt{6})}{ \cancel{6}  }

Cancel the common factor of 6,

\sf \implies  2 \sqrt{3}  -  \sqrt{6}

Hence,

On rationalising we got,

\bf \implies  2 \sqrt{3}- \sqrt{6}

━━━━━━━━━━━━━━━━━━━━━━━━

\bf 2^{nd} \: Method : [Using \: identity]

To rationalise :

\sf \implies\dfrac{6 }{2 \sqrt{3} +  \sqrt{6}  }

\sf \implies\dfrac{6 }{2 \sqrt{3} +  \sqrt{6}  }  \times  \dfrac{2 \sqrt{3}  -  \sqrt{6}}{2 \sqrt{3}  -  \sqrt{6}}

Combine fractions

\sf \implies   \dfrac{6(2 \sqrt{3}  -  \sqrt{6})}{(2 \sqrt{3} +  \sqrt{6})(2 \sqrt{3}  -   \sqrt{6})}

We know that,

\sf \implies (a - b)(a + b) = a^{2} - b ^{2}

So,

\sf \implies   \dfrac{6(2 \sqrt{3}  -  \sqrt{6})}{(2 \sqrt{3} )^{2}-(\sqrt{6})^{2}}

\sf \implies   \dfrac{6(2 \sqrt{3}  -  \sqrt{6})}{12-6}

\sf \implies   \dfrac{\cancel{6}(2 \sqrt{3}  -  \sqrt{6})}{\cancel{6}}

Cancel the common factor of 6,

\sf \implies  2 \sqrt{3}  -  \sqrt{6}

Hence,

On rationalising we got,

\bf \implies  2 \sqrt{3}- \sqrt{6}

Similar questions