Math, asked by anu1242, 9 months ago

Rationalize the denominater of a) 2-√3 /√3
b) 1/5+√2
c) 5+√6/5-√6

Answers

Answered by Anonymous
4

Answer:

 \frac{2 -  \sqrt{3} }{ \sqrt{3} }  \times    \frac{ \sqrt{3} }{ \sqrt{3} }   =  \frac{2 \sqrt{3} - 3 }{3}

 \frac{1}{5 +  \sqrt{2} }  \times  \frac{5 -  \sqrt{2} }{5 -  \sqrt{2} }  =  \frac{5 -  \sqrt{2} }{25 - 2}  =  \frac{5 -  \sqrt{2} }{23}

 \frac{5 +  \sqrt{6} }{5 -  \sqrt{6} }   \times  \frac{5  +  \sqrt{6} }{5 +  \sqrt{6} }  =  \frac{25  + 6}{25 - 6}  =  \frac{31}{19}

FOLLOW ME PLEASE

CHECK OUT MY BIO

Answered by Anonymous
2

(1)  \: \frac{2 -  \sqrt{3} }{ \sqrt{3} }  \\  =  \frac{2 -  \sqrt{3} }{ \sqrt{3} }  \times   \frac{ \sqrt{3} }{ \sqrt{3} }  \\  =  \frac{(2 -  \sqrt{3) }  \sqrt{3} }{ { \sqrt{3} }^{2} }  \\  =  \frac{2 \sqrt{3 - 3} }{3}

(3) \:  \frac{5 +  \sqrt{6} }{5 -  \sqrt{6} }  \\  =  \frac{5 +  \sqrt{6} }{5 -  \sqrt{6} }  \times  \frac{5 +  \sqrt{6} }{5 +  \sqrt{6} }  \\  =  \frac{(5 +  \sqrt{6) ^{2} } }{ {5}^{2}   -  { \sqrt{6} }^{2} }  \\  =  \frac{ {5}^{2} +  { \sqrt{6} }^{2}  + 2 \times 5 \times  \sqrt{6}  }{25 - 6}  \\  =  \frac{25 + 6 + 10 \sqrt{6} }{19}  \\  =  \frac{31 + 10 \sqrt{6} }{19}

(2) \frac{1}{5 \sqrt{2} }  \\  =  \frac{1}{5 +  \sqrt{2} }  \times  \frac{5 -  \sqrt{2} }{5 -  \sqrt{2} }  \\  =  \frac{5 -  \sqrt{2} }{ {5}^{2}  -  { \sqrt{2} }^{2} }  \\  =  \frac{5 -  \sqrt{2} }{25 - 2}  \\  =  \frac{5 -  \sqrt{2} }{23}

Similar questions