Math, asked by anu1242, 10 months ago

Rationalize the denominater of a) 7+3√5 / 7-3√5
b) 5+2√3/7+4√3
c) √5+√3 /√5-√3

Answers

Answered by 2010451vanshika
1

Answer:

a) 94/4

b) 11-6√3

c) 4

Step-by-step explanation:

a) \frac{7+3\sqrt{5} }{7-3\sqrt{5} } × \frac{7+3\sqrt{5} }{7+3\sqrt{5} } = \frac{(7+3\sqrt{5})^{2}    }{(7)^{2}-(3\sqrt{5})^{2}}

[(a-b)×(a+b)=a²-b²]

= \frac{49+45}{49-45} = \frac{94}{4}

b)\frac{5+2\sqrt{3} }{7+4\sqrt{3} } × \frac{7-4\sqrt{3} }{7-4\sqrt{3}} = \frac{5(7-4\sqrt{3})+2\sqrt{3} (7-4\sqrt{3}) }{(7)^{2}-(4\sqrt{3})^{2}  }

[(a-b)×(a+b)=a²-b²]

= \frac{35-20\sqrt{3}+14\sqrt{3} -24 }{49-48} = \frac{11-6\sqrt{3} }{1} = 11-6√3

c)\frac{\sqrt{5}+\sqrt{3}  }{\sqrt{5}-\sqrt{3}  } × \frac{\sqrt{5}+\sqrt{3}  }{\sqrt{5}+\sqrt{3}  } = \frac{(\sqrt{5})^{2}+(\sqrt{3})^{2}    }{(\sqrt{5})^{2}-(\sqrt{3})^{2}}

[(a-b)×(a+b)=a²-b²]

= \frac{5+3}{5-3} = \frac{8}{2} = 4

Similar questions