Math, asked by exoticbeauty3099, 1 year ago

Rationalize the denominator
1÷√5+√2-1

Answers

Answered by hukam0685
0

Step-by-step explanation:

To rationalize the denominator:

 \frac{1}{ \sqrt{5}  +  \sqrt{2}  - 1} \times  \frac{ \sqrt{5} +  \sqrt{2} + 1  }{ \sqrt{5}  +  \sqrt{2}   + 1}   \\  \\  =  >  \frac{ \sqrt{5}  +  \sqrt{2}  + 1}{ {( \sqrt{5}  +  \sqrt{2} )}^{2}  - ( {1)}^{2} }  \\  \\  \\  =  >  \frac{\sqrt{5}  +  \sqrt{2}  + 1}{( { \sqrt{5}) }^{2}  +  {( \sqrt{2} )}^{2} + 2 \sqrt{5}  \sqrt{2}  - 1 }  \\  \\  \\  =  >  \frac{ \sqrt{5} +  \sqrt{2}   + 1}{5 + 2 - 1 + 2 \sqrt{10} }  \\  \\  \\  =  >  \frac{ \sqrt{5} +  \sqrt{2}  + 1 }{6 + 2 \sqrt{10} }  \\  \\

Now again there is a irrational number in the denominator,so rationalized again

 \frac{ \sqrt{5}  +  \sqrt{2}  + 1}{6 + 2 \sqrt{10} }  \times  \frac{6 - 2 \sqrt{10} }{6 - 2 \sqrt{10} }  \\  \\  =  >  \frac{(\sqrt{5}  +  \sqrt{2}  + 1)(6 - 2 \sqrt{10}) }{36 - 40}  \\  \\  =  > \frac{(\sqrt{5}  +  \sqrt{2}  + 1).2.(3- \sqrt{10}) }{ - 4} \\  \\ =  >  \frac{ - (\sqrt{5}  +  \sqrt{2}  + 1)(3- \sqrt{10}) }{ 2} \\  \\  =  >  \frac{ - 3 \sqrt{5} - 3 \sqrt{2}   - 3 +  \sqrt{50}  +  \sqrt{20}  +  \sqrt{10} }{2}  \\  \\  =  > \frac{ - 3 \sqrt{5} - 3 \sqrt{2}   - 3 +  5\sqrt{2}  +  2\sqrt{5}  +  \sqrt{10} }{2} \\  \\  =  >  \frac{2 \sqrt{2}  -  \sqrt{5}  +  \sqrt{10}  - 3}{2}  \\  \\

Hope it helps you

Similar questions