Math, asked by sukhmandadila, 9 months ago

Rationalize the denominator =1/√5 + √2​

Answers

Answered by DrNykterstein
4

 =  =  >  \:  \:  \frac{1}{ \sqrt{5} +  \sqrt{2}  }  \\  \\  =  =  >  \:  \:  \frac{1}{ \sqrt{5} +  \sqrt{2}  }  \times  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5}  -  \sqrt{2} }  \\  \\  =  =  >  \:  \:  \frac{ \sqrt{5} -  \sqrt{2}  }{ {( \sqrt{5} )}^{2} -  {( \sqrt{2}) }^{2}  }  \\  \\  =  =  >  \:  \:  \frac{ \sqrt{5}  -  \sqrt{2} }{5 - 2}  \\  \\  =  =  >  \:  \:  \frac{ \sqrt{5} -  \sqrt{2}  }{3}

Answered by 007Boy
3

Answer:

 \frac{1}{ \sqrt{5}  +  \sqrt{2} }  \\  multiply \: by \:  \frac{ \sqrt{5}   -  \sqrt{2} }{    \sqrt{5}  - \sqrt{2} }  \\  = ( \frac{1}{ \sqrt{5} +  \sqrt{2}  } )( \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5} -  \sqrt{2}  } ) \\ apply \: formula \: (x  +  y) (x - y) =  {x}^{2}  -  {y}^{2}  \\  =  \frac{ \sqrt{5}  -  \sqrt{2} }{( \sqrt{5} ) {}^{2}  - ( \sqrt{2}) {}^{2}  }  \\  =  \frac{ \sqrt{5} -  \sqrt{2}  }{5 - 2}  \\  =  \frac{ \sqrt{5}  -  \sqrt{2} }{3} \:   \: ans \\ hint : ( \sqrt{n} ) {}^{2}  = n

Similar questions