Math, asked by zebanzm, 11 months ago

Rationalize the denominator: 1 / √9−√8

Answers

Answered by rajnitiwari192003
16

Answer:

1/√9-√8

1/3-2√2

1(3+2√2)/(3-2√2)(3+2√2)

using ( a-b)(a+b)=a²-b²

(3+2√2)/(3)²-(2√2)²

(3+2√2)/9-8

3+2√2/1

3+2√2

Answered by hyacinth98
1

On rationalization, the value of  1÷\sqrt{9} -\sqrt{8} becomes (\sqrt{9} +\sqrt{8})÷17.

Step-by-step explanation:

Given:

The expression= 1÷\sqrt{9} -\sqrt{8}

To find=  a rationalized form of this

Solution:

Solving the given expression,

\sqrt{9} -\sqrt{8}

Multiplying it by  1÷\sqrt{9} +\sqrt{8}

1÷(\sqrt{9} -\sqrt{8})( \sqrt{9} +\sqrt{8})

(\sqrt{9} +\sqrt{8})÷( \sqrt{9} -\sqrt{8})(\sqrt{9} +\sqrt{8})

= (\sqrt{9} +\sqrt{8})÷( 9^{2} -8^{2})

= (\sqrt{9} +\sqrt{8})÷(81-64)

= (\sqrt{9} +\sqrt{8})÷(17)

= (\sqrt{9} +\sqrt{8})÷17

Result:

Thus, on rationalization, the value of  1÷\sqrt{9} -\sqrt{8} becomes (\sqrt{9} +\sqrt{8})÷17.

(#Spj3)

Similar questions