Math, asked by michellemanova, 9 months ago

rationalize the denominator
1 / root 3 + root 6

Answers

Answered by Darkrai14
3

\rm \dfrac{1}{\sqrt{3}+\sqrt{6}}

We rationalise the denominator by multiplying it's conjugate by itself and numerator.

Here the denominator is \sqrt{3} + \sqrt{6}

Conjugate of \sqrt{3} + \sqrt{6} is \sqrt{3} -\sqrt{6}

\rm \therefore \quad \dfrac{1}{\sqrt{3}+\sqrt{6}} \times \dfrac{\sqrt{3}-\sqrt{6}}{\sqrt{3}-\sqrt{6}}

\rm \dashrightarrow\dfrac{\sqrt{3}-\sqrt{6}}{(\sqrt{3}+\sqrt{6})(\sqrt{3}-\sqrt{6})} = \dfrac{\sqrt{3}-\sqrt{6}}{(\sqrt{3})^2 - (\sqrt{6})^2} \qquad ...[since, \ (a+b)(a-b)=a^2-b^2]

\rm \dashrightarrow \dfrac{\sqrt{3}-\sqrt{6}}{3- 6}= \dfrac{\sqrt{3}-\sqrt{6}}{-3}

Or

\rm \dashrightarrow \dfrac{-(\sqrt{3}-\sqrt{6})}{3} = \dfrac{-\sqrt{3} + \sqrt{6}}{3}

\dashrightarrow\bf \dfrac{\sqrt{6}-\sqrt{3}}{3}

Hence, rationalised.

_____________________________

Similar questions