Math, asked by kaverisingh248, 4 hours ago

rationalize the denominator 1/underroot6-underroot7​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given

\rm :\longmapsto\:\dfrac{1}{ \sqrt{6}  -  \sqrt{7} }

On rationalizing the denominator means, we multiply and divide the given expression by conjugate of denominator, means with opposite sign in binomial.

So,

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{6} -  \sqrt{7}  }  \times \dfrac{ \sqrt{6}  +  \sqrt{7} }{ \sqrt{6}  +  \sqrt{7} }

We know,

\red{ \boxed{ \rm{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}}

So, we get

\rm \:  =  \:  \:\dfrac{ \sqrt{6}  +  \sqrt{7} }{ {( \sqrt{6} )}^{2}  -  {( \sqrt{7} )}^{2} }

\rm \:  =  \:  \:\dfrac{ \sqrt{6}  +  \sqrt{7} }{6 - 7}

\rm \:  =  \:  \:\dfrac{ \sqrt{6}  +  \sqrt{7} }{- 1}

\rm \:  =  \:  \: -  \sqrt{6} -  \sqrt{7}

Hence,

\rm :\longmapsto\:\dfrac{1}{ \sqrt{6}  -  \sqrt{7} }  =  -  \sqrt{6} -  \sqrt{7}

Additional Information :-

Let's solve more problems of same type!!

Question :- Rationalize the denominator of following :

 \red{\rm :\longmapsto\:1)  \:  \: \: \dfrac{ \sqrt{5} }{ \sqrt{3}  +  \sqrt{2} }}

Solution :

{\rm :\longmapsto\:\:  \: \: \dfrac{ \sqrt{5} }{ \sqrt{3}  +  \sqrt{2} }}

On rationalizing the denominator, we get

\rm \:  =  \:  \:\dfrac{ \sqrt{5} }{ \sqrt{3}   +  \sqrt{2} }  \times \dfrac{ \sqrt{3} -  \sqrt{2} }{ \sqrt{3} - \sqrt{2} }

We know that

\red{ \boxed{ \rm{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}}

So, we get

\rm \:  =  \:  \:\dfrac{ \sqrt{5}( \sqrt{3}   - \sqrt{2} )}{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2} )}^{2} }

\rm \:  =  \:  \:\dfrac{ \sqrt{15}  -  \sqrt{10} }{3 - 2}

\rm \:  =  \:  \:\dfrac{ \sqrt{15}  -  \sqrt{10} }{1}

\rm \:  =  \:  \: \sqrt{15} -  \sqrt{10}

Hence,

 \red{\rm :\longmapsto\:  \: \: \dfrac{ \sqrt{5} }{ \sqrt{3}  +  \sqrt{2}} =  \sqrt{15}  -  \sqrt{10} }

 \green{\rm :\longmapsto\:2)  \:  \: \: \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }}

So, on rationalizing the denominator, we get

\rm \:  =  \:  \:\dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \times \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }

We know,

\red{ \boxed{ \rm{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}}

\rm \:  =  \:  \:\dfrac{ {( \sqrt{3}  -  \sqrt{2} )}^{2} }{ {( \sqrt{3})}^{2}  -  {( \sqrt{2} )}^{2} }

We know,

\red{ \boxed{ \rm{ \:  {(x - y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy}}}

\rm \:  =  \:  \:\dfrac{3 + 2 - 2 \sqrt{6} }{3 - 2}

\rm \:  =  \:  \:\dfrac{5 - 2 \sqrt{6} }{1}

\rm \:  =  \:  \:5 - 2 \sqrt{6}

Hence,

 \green{\rm :\longmapsto\:  \: \: \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} } = 5 - 2 \sqrt{6} }

Answered by akeertana503
5

\begin{gathered}\large {\boxed{\sf{\mid{\overline {\underline {\star QUESTION ::}}}\mid}}}\end{gathered}

rationalize the denominator 1/underroot6-underroot7

\Huge{\textbf{\textsf{\color{navy}{An}{\purple{sW}{\pink{eR{\color{pink}{:-}}}}}}}}

</p><p> \frac{1}{ \sqrt{6}  -  \sqrt{7} }  \\  \\  =  \frac{1}{ \sqrt{6} -  \sqrt{7}  }  \times  \frac{ \sqrt{6} +  \sqrt{7}  }{ \sqrt{6} +  \sqrt{7}  }   \\  \\  =  \frac{ \sqrt{6} +  \sqrt{7}  }{6 - 7}  \\  \\  =  \frac{ \sqrt{6} +  \sqrt{7}  }{ - 1}

 - ( \sqrt{6}   +  \sqrt{7} ) \\  \\  =  -  \sqrt{6}  -  \sqrt{7}

hope its helpful⭐✨⭐✨

\huge\sf\underline\red{answered\:by\:KIMU}

Similar questions