rationalize the denominator 1 upon root 5 minus root 3
Answers
Answered by
54
Hola
Answer -
1/√5 - √3
1/√5 - √3 × (√5 + √3) / (√5 + √3)
= (√5 + √3)/(√5)² - (√3)²
as, (a + b) (a - b) = a² - b²
Therefore,
(√5 + √3)/5 - 3
= (√5 + √3)/2
Hope it helps!
Answer -
1/√5 - √3
1/√5 - √3 × (√5 + √3) / (√5 + √3)
= (√5 + √3)/(√5)² - (√3)²
as, (a + b) (a - b) = a² - b²
Therefore,
(√5 + √3)/5 - 3
= (√5 + √3)/2
Hope it helps!
Answered by
2
Concept
Rationalisation is a method to eliminate the irrational number present in the denominator.
Find
Rationalise 1 / ( √5 - √3 )
Solution
1 / ( √5 - √3 )
Multiply both numerator and denominator with ( √5 + √3 )
[1*( √5 + √3 )] / [( √5 + √3 )*( √5 - √3 )]
Using (a+b)(a-b) = a² - b²
( √5 + √3 ) / [(√5)² - (√3)²]
( √5 + √3 ) / (5 - 3)
( √5 + √3 ) / 2
After rationalising of 1 / ( √5 - √3 ) we get ( √5 + √3 ) / 2
#SPJ2
Similar questions