Math, asked by afreen85, 1 year ago

rationalize the denominator 1 upon under root 6 + under root 5 minus under root 11​

Answers

Answered by LovelyG
5
Answer:

 \frac{1}{ \sqrt{6} + \sqrt{5} - \sqrt{11} } \\ \\ \small \sf \frac{1}{ \sqrt{6} + \sqrt{5} - \sqrt{11} } \times \frac{( \sqrt{6} + \sqrt{5}) + \sqrt{11} }{( \sqrt{6} + \sqrt{5}) +\sqrt{11} } \\ \\ \small \sf \frac{ \sqrt{6} + \sqrt{5} - \sqrt{11} }{( \sqrt{6} + \sqrt{5}) {}^{2} - (\sqrt{11}) {}^{2} } \\ \\ \frac{ \sqrt{6} + \sqrt{5} + \sqrt{11} }{6 + 5 + 2 \sqrt{30} - 11 } \\ \\ \frac{ \sqrt{6} + \sqrt{5} + \sqrt{11} }{2 \sqrt{30} } \\ \\ \frac{ \sqrt{6} + \sqrt{5} + \sqrt{11} }{2 \sqrt{30} } \times \frac{2 \sqrt{30} }{2 \sqrt{30} } \\ \\ \frac{2 \sqrt{30}(\sqrt{6} + \sqrt{5} + \sqrt{11})}{(2 \sqrt{30}) {}^{2} } \\ \\ \frac{2( \sqrt{180} + \sqrt{150} + \sqrt{330} )}{120} \\ \\ \frac{6 \sqrt{5} + 5 \sqrt{6} + \sqrt{330} }{60}
Answered by pranithrahulspr
2

Hi bro.....

Here's your answer....

Hope it helps....

Attachments:
Similar questions