Math, asked by bisheshsingh852, 11 months ago

Rationalize the denominator.... ​

Attachments:

Answers

Answered by 007Boy
5

Answer:yr solution is here.

Attachments:
Answered by Sudhir1188
8

ANSWER:

  • The value of the above expression = (√7+√6)

GIVEN:

 \dfrac{1}{ \sqrt{7} -  \sqrt{6}  }

TO FIND:

  • The value of above expression.

SOLUTION:

 =  \dfrac{1}{ \sqrt{7}  -  \sqrt{6} }  \\  \\  =  \frac{1}{ \sqrt{7} -  \sqrt{6}  }  \times   \frac{ \sqrt{7}  +  \sqrt{6} }{ \sqrt{7} +  \sqrt{6}  }  \\  \\  =  \frac{( \sqrt{7}  +  \sqrt{6}) }{( \sqrt{7} -  \sqrt{6}  )( \sqrt{7} +  \sqrt{6}  )}  \\  \\  =  \frac{ \sqrt{7} +  \sqrt{6}  }{( \sqrt{7} ) {}^{2}  - ( \sqrt{6}) {}^{2}  }  \\  \\  =  \frac{ \sqrt{7} +  \sqrt{6}  }{7 - 6}  \\  \\  =  \frac{ \sqrt{7}  +  \sqrt{6} }{1}  \\  \\   =  \sqrt{7}  +  \sqrt{6}

  • The value of the above expression = (7+6)

NOTE:

some important formulas

  • (a+b)(a-b) = -b²
  • (a+b)² = ++2ab
  • (a-b)² = a²+b²-2ab
Similar questions