Math, asked by gunjanbaloda123456, 3 months ago

rationalize the denominator 2)√3-1​

Answers

Answered by anindyaadhikari13
7

Solution:

Given: 2/(√3 - 1)

We have to rationalise the denominator. Rationalization means to remove all the surds from the denominator part.

So,

 \tt \dfrac{2}{ \sqrt{3} - 1}

 \tt  = \dfrac{2 \times ( \sqrt{3}  + 1)}{( \sqrt{3} - 1)( \sqrt{3} + 1)}

Applying identity a² - b² = (a + b)(a - b), we get,

 \tt  = \dfrac{2 \times ( \sqrt{3}  + 1)}{3 - 1}

 \tt  = \dfrac{2 \times ( \sqrt{3}  + 1)}{2}

 \tt  =  \sqrt{3}  + 1

So, after rationalization, result we get = √3 + 1.

Answer:

  • √3 + 1

•••♪

Answered by DüllStâr
29

Correct Question:

Rationalize the denominator  \small \bf\dfrac{2}{ \sqrt{3} - 1}

Step by step explanation:

 \sf \dashrightarrow \dfrac{2}{ \sqrt{3} - 1 }

 \\  \\  \\

 \sf \dashrightarrow \dfrac{2}{ \sqrt{3} - 1 }  \times  \dfrac{ \sqrt{3} + 1 }{ \sqrt{3} + 1 }

 \\  \\

 \sf \dashrightarrow  \dfrac{ 2(\sqrt{3} + 1) }{ ( \sqrt{3} - 1)( \sqrt{3} + 1) }

 \\  \\

 \sf \dashrightarrow  \dfrac{ 2(\sqrt{3} + 1) }{  {( \sqrt{3})}^{2}  - (1) {}^{2}  }

 \\  \\  \\

 \sf \dashrightarrow  \dfrac{ 2(\sqrt{3} + 1) }{  {( \sqrt{3})}^{2}  - 1}

 \\  \\  \\

 \sf \dashrightarrow  \dfrac{ 2(\sqrt{3} + 1) }{  { 3- 1} }

 \\  \\

 \sf \dashrightarrow  \dfrac{ 2(\sqrt{3} + 1) }{ 2 }

 \\  \\  \\

 \sf \dashrightarrow  \dfrac{  \cancel2(\sqrt{3} + 1) }{ \cancel 2 }

 \\  \\  \\

 \sf \dashrightarrow  \dfrac{ (\sqrt{3} + 1) }{1}

 \\  \\  \\

 \sf \dashrightarrow \sqrt{3}  + 1

 \\  \\  \\

  \purple \bigstar\blue{\boxed{ \gray { \sf{}Hence  \:  \: Rationalized}}} \purple \bigstar

 \\  \\

Explanation:

To rationalize the denominator we have to multiply it with same same number but by changing the signs

eg:(√3-√2)×(√3+√2)

=(√3)²-(√2)²

=3-2

=1

↑The same rule is applied above

Similar questions