Rationalize the denominator 2√3-√5/2√2+3√3
Answers
Rationalising denominator
2√3—√5/2√2+3√3
=(2√3—√5)/(2√2+3√3) x (2√2— 3√3)/(2√2—3√3)
=(2√3—√5)*(2√2—3√3)/(2√2)^2—(3√3)^2
(by using (a—b)(a+b)=a^2—b^2)
=4√6—18—2√10+3√15/8—27
=4√6—18—2√10+3√15/19
Step-by-step explanation:
Given that:
What to do:-
To rationalised the denominator.
Solution:-
We have,
The denominator is 2√2+3√3. Multiplying the numerator and denominator by 2√2-3√3,
We get,
⬤ Applying Algebraic Identity
(a+b)(a-b) = a² - b² to the denominator
We get,
Hence the denominator is rationalised.
Know more Algebraic Identities:-
(a+ b)² = a² + b² + 2ab
( a - b )² = a² + b² - 2ab
( a + b )² + ( a - b)² = 2a² + 2b²
( a + b )² - ( a - b)² = 4ab
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
a² + b² = ( a + b)² - 2ab
(a + b )³ = a³ + b³ + 3ab ( a + b)
( a - b)³ = a³ - b³ - 3ab ( a - b)
If a + b + c = 0 then a³ + b³ + c³ = 3abc
I hope it's help with...☺