Math, asked by vishalnandanwar1, 5 months ago

Rationalize the denominator 2√5+3√5/2√5-3√2​

Answers

Answered by karenfung0911
0

Answer:

1.73

Step-by-step explanation:

Mark me as brainliest

Answered by Uriyella
10
  • The rationalising of the denominator of the given fraction = \bf\dfrac{50+15\sqrt{10}}{2}

Given :

  • A fraction,  \bf \dfrac{2 \sqrt{5} + 3 \sqrt{5}}{2 \sqrt{5} - 3 \sqrt{2}}

Required :

  • Rationalize the denominator of the given fraction,  \bf \dfrac{2 \sqrt{5} + 3 \sqrt{5}}{2 \sqrt{5} - 3 \sqrt{2}}

Solution :

Given fraction,

 \bullet \:  \:  \:  \:  \bf \dfrac{2 \sqrt{5} + 3 \sqrt{5}}{2 \sqrt{5} - 3 \sqrt{2}}

Multiple the reciprocal of the denominator by both the denominator and the numerator of the given fraction.

 \bf \implies  \dfrac{2 \sqrt{5} + 3 \sqrt{5}}{2 \sqrt{5} - 3 \sqrt{2} }  \times  \dfrac{2 \sqrt{5} + 3 \sqrt{2}}{2 \sqrt{5} + 3 \sqrt{2}}  \\

Using identity in the denominator of the given fraction.

  \bf\bullet \:  \:  \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

 \\ \bf \implies \dfrac{(2 \sqrt{5} + 3 \sqrt{5} )(2 \sqrt{5} + 3 \sqrt{2})}{ {(2 \sqrt{5} )}^{2}  -  {(3 \sqrt{2})}^{2} }  \\  \\  \\ \bf \implies \dfrac{2 \sqrt{5}(2 \sqrt{5} + 3 \sqrt{2}) + 3 \sqrt{5}(2 \sqrt{5} + 3 \sqrt{2})}{ {(2 \sqrt{5})}^{2} -  {(3 \sqrt{2})}^{2} }  \\  \\  \\ \bf \implies   \dfrac{ {(2 \sqrt{5}) }^{2} + (2 \times 3 \sqrt{5 \times 2} ) + (3 \times 2 \sqrt{5 \times 5} + (3 \times 3 \sqrt{5 \times 2})}{4 \times 5 - 9 \times 2}  \\  \\  \\ \bf \implies  \dfrac{4 \times 5 + 6 \sqrt{10} + 6  \times 5 + 9 \sqrt{10}}{20 - 18}  \\  \\  \\ \bf \implies  \dfrac{20 + 6 \sqrt{10} + 30 + 9 \sqrt{10}}{2}  \\  \\  \\ \bf \implies   \dfrac{20 + 30 + 6 \sqrt{10} + 9 \sqrt{10}  }{2}  \\  \\  \\ \bf \implies   \dfrac{50 + 15 \sqrt{10} }{2}

Hence,

The rationalising of the denominator of the given fraction is \bf\dfrac{50+15\sqrt{10}}{2}

Similar questions
English, 2 months ago