Math, asked by tvishruta, 5 months ago

rationalize the denominator​

Attachments:

Answers

Answered by Anonymous
2

To rationalise the denominator, do the following steps,

2 \sqrt{3 }  + 3  \sqrt{2}  \div 2 \sqrt{3}  - 3 \sqrt{2}  \\

2 \sqrt{3 } + 3 \sqrt{2 }  \div 2 \sqrt{3}  - 3 \sqrt{2} \times 2 \sqrt{3 }  + 3  \sqrt{2}  \div 2 \sqrt{3}   +  3 \sqrt{2}

2 \sqrt{3 } + 3 \sqrt{2 }  \div  {3}^{2} -  {(3 \sqrt{2) }}^{2}

2 \sqrt{3 } + 3 \sqrt{2 }  \div  (6 -18)

2 \sqrt{3 } + 3 \sqrt{2 }  \div  ( - 12)

Answered by xInvincible
1

Answer:

 - 5 - 2 \sqrt{6 }

Step-by-step explanation:

 \frac{2 \sqrt{3} + 3 \sqrt{2}  }{2 \sqrt{3}  - 3 \sqrt{2} }  \\ lets \: rationalize = ) \\ ) \frac{2 \sqrt{3} + 3 \sqrt{2}  }{2 \sqrt{3}  - 3 \sqrt{2}}  \times  \frac{2 \sqrt{3} + 3 \sqrt{2}  }{2 \sqrt{3} + 3 \sqrt{2} }  \\  \frac{(x + y)(x + y) =  {x}^{2} + 2xy +  {y}^{2}  }{(x + y)(x - y) =  {(x)}^{2} -  {(y)}^{2}  }   \\  = ) \frac{ {(2 \sqrt{3}  {)}^{2}  + (2 \times 2 \sqrt{3} \times 3 \sqrt{2}  )}^{2}  +  {(3 \sqrt{2} )}^{2} }{ {(2 \sqrt{3} )}^{2} -  {(3 \sqrt{2} )}^{2}  }  \\  = ) \frac{(4 \times 3) + 12 \sqrt{6}  + (9 \times 2)}{(4 \times 3) - (9 \times 2)}   \\  = ) \frac{12 + 12 \sqrt{6}  + 18}{12 - 18}  \\  = ) \frac{12 + 12 \sqrt{6}  + 18}{ - 6}  \\  = ) \frac{6(2 + 2 \sqrt{6}  + 3)}{ - 6}  \\  = ) - 1(2 + 2 \sqrt{6}  + 3) \\  = ) - 2 - 2 \sqrt{6 }  - 3 \\  = ) - 5 - 2 \sqrt{6}

Hope it helped

Similar questions