Math, asked by shivitak57gmailcom, 3 months ago

Rationalize the denominator
3√2/2√3+√5​

Answers

Answered by ravi2303kumar
0

Answer:

\frac{6\sqrt{6} - 3\sqrt{10}  }{7} (denominator has been rationalised )

Step-by-step explanation:

\frac{3\sqrt{2} }{2\sqrt{3}+\sqrt{5}  }

= \frac{3\sqrt{2} }{2\sqrt{3}+\sqrt{5}  } * \frac{2\sqrt{3}-\sqrt{5}  }{2\sqrt{3}-\sqrt{5}  }

= \frac{3\sqrt{2}*(2\sqrt{3}-\sqrt{5})  }{(2\sqrt{3}+\sqrt{5})(2\sqrt{3}-\sqrt{5} )  }

= \frac{(3\sqrt{2}*2\sqrt{3}) - (3\sqrt{2}*\sqrt{5})  }{(2\sqrt{3})^2-(\sqrt{5})^2  }

= \frac{6\sqrt{6} - 3\sqrt{10}  }{(4*3) - 5  }

= \frac{6\sqrt{6} - 3\sqrt{10}  }{12- 5  }

= \frac{6\sqrt{6} - 3\sqrt{10}  }{7}  , here the denominator has been rationalised

Similar questions