Math, asked by dheeprishi57, 1 month ago

rationalize the denominator 3/√5-√3

Answers

Answered by Anonymous
78

Step-by-step explanation:

 \large \tt  \purple{\frac{3}{ \sqrt{5}  -  \sqrt{3} }  } \\ \\ \large \tt =  \frac{3}{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} +  \sqrt{3}  }   \\ \\  \large \tt=  \frac{3( \sqrt{5} +  \sqrt{3}  )}{ {( \sqrt{5} })^{2}  -  {( \sqrt{3} })^{2} }  \\   \\ \large \tt=  \frac{3 \sqrt{5} + 3 \sqrt{3}  }{5 - 3}    \\ \\  \large \tt \pink{=  \frac{3 \sqrt{5} + 3 \sqrt{3}  }{2} }

Answered by bhumiraj1234
1

Step-by-step explanation:

 \frac{3}{ \sqrt{5}  -  \sqrt{3} }

 =  >  \frac{3}{ \sqrt{5}  -  \sqrt{3} }  \times   \frac{ \sqrt{5}   +   \sqrt{3} }{ \sqrt{5 +  \sqrt{3} } }

 =  >  \frac{3 \sqrt{5}  + 3 \sqrt{3} }{( \sqrt{5}) {}^{2}  - ( \sqrt{3}) {}^{2}    }

 =  >  \frac{3 \sqrt{5} + 3 \sqrt{3}  }{5 - 3}

 =  >  \frac{3 \sqrt{5} + 3 \sqrt{3}  }{2}

Similar questions