Math, asked by shifa200499, 1 year ago

Rationalize the denominator 3/root3+root5-root2

Answers

Answered by vivek007146
112
match the answer...hope it shall help u
Attachments:

shifa200499: Thanks
Answered by aquialaska
110

Answer:

Answer is \frac{-1}{4}(3\sqrt{2}-2\sqrt{3}-\sqrt{30})

Step-by-step explanation:

Given Expression = \frac{3}{\sqrt{3}+\sqrt{5}-\sqrt{2}}

We have to rationalize the denominator of given expression.

Consider,

\frac{3}{\sqrt{3}+\sqrt{5}-\sqrt{2}}

\frac{3}{(\sqrt{3}+\sqrt{5})-\sqrt{2}}

\frac{3}{(\sqrt{3}+\sqrt{5})-\sqrt{2}}\times\frac{(\sqrt{3}+\sqrt{5})+\sqrt{2}}{(\sqrt{3}+\sqrt{5})+\sqrt{2}}

\frac{3((\sqrt{3}+\sqrt{5})+\sqrt{2})}{(\sqrt{3}+\sqrt{5})^2-2} (using identity in denominator (a+b)(a-b) = a²-b² )

\frac{3(\sqrt{3}+\sqrt{5})+\sqrt{2})}{3+5+2\sqrt{3}\sqrt{5}-2}

\frac{3(\sqrt{3}+\sqrt{5})+\sqrt{2})}{6+2\sqrt{3}\sqrt{5}}

\frac{3}{2}\times\frac{(\sqrt{3}+\sqrt{5})+\sqrt{2})}{3+\sqrt{3}\sqrt{5}}

\frac{3}{2}\times\frac{(\sqrt{3}+\sqrt{5}+\sqrt{2})}{3+\sqrt{15}}\times\frac{3-\sqrt{15}}{3-\sqrt{15}}

\frac{3}{2}\times\frac{(\sqrt{3}+\sqrt{5}+\sqrt{2})(3-\sqrt{15})}{9-15} (using same identity in denominator)

\frac{3}{2}\times\frac{(\sqrt{3}+\sqrt{5}+\sqrt{2})(3-\sqrt{15})}{-6}

\frac{-1}{4}(\sqrt{3}+\sqrt{5}+\sqrt{2})(3-\sqrt{15})

\frac{-1}{4}(3\sqrt{2}-2\sqrt{3}-\sqrt{30}) (after simplifying product)

Therfore, Answer is \frac{-1}{4}(3\sqrt{2}-2\sqrt{3}-\sqrt{30})

Similar questions