Math, asked by muskantasmianaaz, 4 months ago

rationalize the denominator​

Attachments:

Answers

Answered by Anonymous
10

 \sf\dfrac{3 \sqrt{5}  -  \sqrt{7} }{3 \sqrt{3}  +  \sqrt{2} }

Given to rationalize

For rationalising denominator Radical of denominator must be removed So, multiply and divide with its rationalizing factor

Rationalizing factor of

\3 \sqrt{3}  +  \sqrt{2}  \:  \: is \: 3 \sqrt{3}  -  \sqrt{2}

Multiply and divide with its

So,

 \sf\dfrac{3 \sqrt{5} -  \sqrt{7}  }{3 \sqrt{3} +  \sqrt{2}  }  \times \frac{3 \sqrt{3  } -  \sqrt{2}  }{3 \sqrt{3} -  \sqrt{2}  }

\sf\dfrac{3√5(3√3-√2)-√7(3√3-√2}{(3√3)²-(√2)²}

 \sf\dfrac{9 \sqrt{15} - 3 \sqrt{10}  }{27 - 2}

 \sf\dfrac{9 \sqrt{15} - 3 \sqrt{10}-3\sf\sqrt{21}-\sf\sqrt{14}}{25} [/tex]

Hence denominator rationalized

Used identity for rationalizing denominator

(a+b)(a-b) = a²-b²

If u confused with latex Once plz refer attachment for easy understanding

Attachments:
Similar questions