Math, asked by bansurichaurasia8, 2 months ago

Rationalize the denominator​

Attachments:

Answers

Answered by emma3006
2

\huge \mathtt{\;\;\;\; \frac{1}{\sqrt{8} - 2}}

\huge \mathtt{ = \frac{1}{\sqrt{8} - 2} × \frac{\sqrt{8} + 2}{\sqrt{8} + 2}}

\huge \mathtt{ = \frac{\sqrt{8} + 2}{(\sqrt{8})² - (2)²}}

\huge \mathtt{ = \frac{\sqrt{8} + 2}{8 - 4}}

\huge \mathtt{ = \frac{2(\sqrt{2} + 1)}{4}}

\huge \mathtt{ = \frac{\not 2(\sqrt{2} + 1)}{\not 4 \;_{2}}}

\huge \mathtt{ = \frac{\sqrt{2} + 1}{2}}

Answered by vipashyana1
2

Answer:

 \frac{1}{ \sqrt{8} - 2 } \\ =  \frac{1}{ \sqrt{8}  - 2}  \times  \frac{ \sqrt{8} + 2 }{ \sqrt{8} + 2 }   \\ =  \frac{1 (\sqrt{8}  + 2)}{( \sqrt{8} - 2)( \sqrt{8}  + 2) }   \\ =  \frac{ \sqrt{8}  + 2}{ {( \sqrt{8}) }^{2} -  {(2)}^{2}  }  \\  =  \frac{ \sqrt{8}  + 2}{8 - 4}   \\ =  \frac{ \sqrt{8}  + 2}{4}  \\  =  \frac{2 \sqrt{2}  + 2}{4}   \\ =  \frac{2( \sqrt{2} + 1) }{4}   \\ =  \frac{ \sqrt{2} + 1 }{2}

Similar questions