Math, asked by tejassss09, 4 months ago

Rationalize the denominator

Attachments:

Answers

Answered by Salmonpanna2022
2

Answer:

16.

Step-by-step explanation:

Given:

 \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  +  \frac{3 -  \sqrt{7} }{3 +  \sqrt{7} }

Solution:

 \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  \times  \frac{3 +  \sqrt{7} }{3 +  \sqrt{7} }  +  \frac{3 -  \sqrt{7} }{3 +  \sqrt{7} }   \times  \frac{3 -  \sqrt{7} }{3 -  \sqrt{7} }  \\  =  >  \frac{(3 +  { \sqrt{7} )}^{2}  }{( {3)}^{2} - ( {3)}^{2}  }  +  \frac{(3 -  { \sqrt{7}) }^{2} }{ {(3)}^{2}  - ( { \sqrt{7} )}^{2} }  \\  =  >  \frac{9 + 7 + 2 \times 3 \times  \sqrt{7} }{9 - 7}  +  \frac{9 + 7 - 2 \times 3 \times  \sqrt{7} }{9 - 7}  \\  =  >  \frac{16 + 6 \sqrt{7} }{2}  +  \frac{16 - 6 \sqrt{7} }{2}  \\  =  >  \frac{16 + 6 \sqrt{7} + 16 - 6 \sqrt{7}  }{2}  \\  =  >  \frac{32}{2}  \\  =  > 16 \:  \ans. \\   {}^{ \please \: mark \: me \: brainlist \: ans.}

Answered by shreyaSingh2022
5

Answer:

16 is your correct answer.

Similar questions