Math, asked by athishvaishu123, 1 month ago

rationalize the denominator​

Attachments:

Answers

Answered by Anonymous
1

1/(5 - 2√3)

1/(5 - 2√3) * (5 + 2√3)/(5 + 2√3)

(5 + 2√3)/((5)² - (2√3)²)

(5 + 2√3)/(25 - 12)

(5 + 2√3)/13

Answered by Dinosaurs1842
8

Question :-

\sf Rationalize \:\: \dfrac{1}{5-2\sqrt{3}}

Answer :-

In order to rationalise the denominator, we have to multiply the numerator and the denominator but the denominator's inverse such that (a-b)(a+b) = a² - b² is formed in the denominator.

  • Denominator = 5-2√3
  • Rationalising factor = 5 + 2√3

\sf Multiplying\:by\:\: \dfrac{5+\sqrt{3}}{5+\sqrt{3}}

 \implies \sf  \dfrac{1}{5 -  2\sqrt{3} } \times  \dfrac{5 +  2\sqrt{3} }{5 +  2\sqrt{3} }

 \implies \sf  \dfrac{1(5 +  2\sqrt{3}) }{(5 -  2\sqrt{3})(5 +  2\sqrt{3})  }

 \implies \sf  \dfrac{5 +  2\sqrt{3} }{ {(5)}^{2}  - (2 \sqrt{3})^{2}  }

 \implies \sf  \dfrac{5 + 2 \sqrt{3} }{(5 \times 5) - (2  \times 2 \times  \sqrt{3}  \times  \sqrt{3} )}

 \implies \sf  \dfrac{5 + 2 \sqrt{3} }{(25) - (12)}

 \implies \sf  \dfrac{5 + 2 \sqrt{3} }{13}

Therefore,\: the\: Rationalized\: form\: of \:\:\: \dfrac{1}{5-2\sqrt{3}} \:\:\: is \:\:\: \dfrac{5+\sqrt{3}}{13}

Identities :-

  • (a+b)² = a² + 2ab + b²
  • (a-b)² = a² - 2ab + b²
  • a² - b² = (a+b)(a-b)
  • (x+a)(x+b) = x² + x(a+b) + ab
  • (a+b+c)² = a² + b² + c² + 2(ab + bc + ca)
  • (a+b)³ = a³ + 3ab(a+b) + b³
  • (a-b)³ = a³ - 3ab(a-b) - b³
  • a³ + b³ = (a+b)(a² - ab + b²)
  • a³ - b³ = (a-b)(a² + ab + b²)

Similar questions